首页> 外文期刊>IEEE transactions on industrial informatics >Low-Complexity MIMO-FBMC Sparse Channel Parameter Estimation for Industrial Big Data Communications
【24h】

Low-Complexity MIMO-FBMC Sparse Channel Parameter Estimation for Industrial Big Data Communications

机译:工业大数据通信的低复杂性MIMO-FBMC稀疏信道参数估计

获取原文
获取原文并翻译 | 示例

摘要

Industrial applications can produce significant amounts of data that require low delay and high data rate communications. Multiple-input-multiple-output filter bank multicarrier (MIMO-FBMC) communications employing offset quadrature amplitude modulation has been proposed for industrial big data due to its reliability and high spectrum efficiency. One of the difficulties in implementing a MIMO-FBMC system is accurate channel estimation (CE). The main factor affecting the CE performance is intrinsic imaginary interference, and the conventional preamble-based CE is not effective in this case. Thus, in this article, a low-complexity sparse adaptive CE scheme is proposed that is based on a dynamic threshold. This reduces the number of inner product calculations by considering only the columns of the measurement matrix greater than the threshold. Simulation results are presented that show that the proposed scheme is better than other well-known methods in terms of computational complexity and CE accuracy.
机译:工业应用可以产生需要低延迟和高数据速率通信的大量数据。由于其可靠性和高频谱效率,已经提出了采用偏移正交幅度调制的多输入多输出滤波器库多载波(MIMO-FBMC)通信。实施MIMO-FBMC系统的困难之一是准确的信道估计(CE)。影响CE性能的主要因素是内在的虚构干扰,并且在这种情况下,传统的序言的CE无效。因此,在本文中,提出了一种基于动态阈值的低复杂性稀疏自适应CE方案。这通过考虑大于阈值的测量矩阵的列来减少内部产品计算的数量。提出了模拟结果,表明所提出的方案比计算复杂性和CE精度方面的其他众所周知的方法更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号