首页> 外文期刊>IEEE transactions on industrial informatics >Robust Excitation Force Estimation and Prediction for Wave Energy Converter M4 Based on Adaptive Sliding-Mode Observer
【24h】

Robust Excitation Force Estimation and Prediction for Wave Energy Converter M4 Based on Adaptive Sliding-Mode Observer

机译:基于自适应滑模观测器的波能转换器M4的鲁棒激励力估计和预测

获取原文
获取原文并翻译 | 示例

摘要

The wave excitation force estimation and prediction play an important role in improving the performance of causal and noncausal controllers for wave energy converters (WECs). This article proposes a robust adaptive sliding-mode observer (ASMO) to estimate the wave excitation force subject to unknown disturbances and parametric uncertainties for a multimotion multifloat WEC, called M4. Both the convergence time and the estimation error can be explicitly bounded within expected limits by tuning the ASMO parameters, which are essentially beneficial for causal controllers to maintain the control performance. A fixed-time convergent sliding variable is designed to drive the estimation error into a small region within a fixed time. Due to the adaptive law, the overall system is proven to be finite-time stable, which allows explicit formulations of the convergence time and the estimation error. Moreover, based on the wave force estimation by the ASMO, an improved auto-regressive (AR) model whose coefficients are updated by online training is developed to predict the wave excitation force. The prediction errors can also be explicitly estimated to achieve guaranteed control performance for the noncausal controller requiring future excitation force. From the comparison based on a realistic sea wave gathered from Cornwall, U.K., it can be found that compared with the conventional Kalman filter, the ASMO achieves a smaller steady-state estimation error and has satisfactory robustness performance against 30% model mismatch.
机译:波激发力估计和预测在提高波能转换器(WECS)的因果和非共轨控制器的性能方面发挥着重要作用。本文提出了一种强大的自适应滑模观察者(ASMO),以估计经过未知干扰的波激励力和多电位多域WEC的参数不确定性,称为M4。通过调整ASMO参数,可以在预期限制内明确地界定收敛时间和估计误差,这些参数基本上有利于因果控制器来维持控制性能。定时收敛滑动变量旨在将估计误差驱动到一个固定时间内的小区域。由于自适应法律,总体系统被证明是有限的稳定性,这允许显式配方的收敛时间和估计误差。此外,基于由ASMO的波力估计,开发了由在线训练更新的改进的自动回归(AR)模型以预测波激发力。还可以明确估计预测误差以实现需要未来励磁力的非广域控制器的保证控制性能。从基于从康沃尔郡收集的现实海浪的比较来看,可以发现与传统的卡尔曼滤波器相比,ASMO达到较小的稳态估计误差,并且对30%模型不匹配具有令人满意的鲁棒性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号