首页> 外文期刊>IEEE transactions on industrial informatics >Multibranch and Multiscale CNN for Fault Diagnosis of Wheelset Bearings Under Strong Noise and Variable Load Condition
【24h】

Multibranch and Multiscale CNN for Fault Diagnosis of Wheelset Bearings Under Strong Noise and Variable Load Condition

机译:多刺和多尺度CNN用于在强噪声和可变负载条件下的轴承轴承故障诊断

获取原文
获取原文并翻译 | 示例

摘要

The critical issue for fault diagnosis of wheel-set bearings in high-speed trains is to extract fault features from vibration signals. To handle high complexity, strong coupling, and low signal-to-noise ratio of the vibration signals, this article proposes a novel multibranch and multiscale convolutional neural network that can automatically learn and fuse abundant and complementary fault information from the multiple signal components and time scales of the vibration signals. The proposed method combines the conventional filtering methods and the idea of the multiscale learning, which can extend the breadth and depth of the feature learning process. Consequently, the proposed network can perform better. The experimental results on the wheelset bearing dataset demonstrate that the proposed method has better antinoise ability and load domain adaptability and can diagnose 12 fault types more accurately when compared with the five state-of-the-art networks.
机译:高速列车轮式轴承故障诊断的关键问题是从振动信号中提取故障特征。为了处理高复杂性,强耦合和振动信号的低信噪比,本文提出了一种新颖的多刺支和多尺度卷积神经网络,可以从多个信号分量和时间自动学习和融合丰富和互补的故障信息振动信号的尺度。所提出的方法结合了传统的过滤方法和多尺度学习的想法,这可以扩展特征学习过程的广度和深度。因此,所提出的网络可以更好地执行。轴承数据集上的实验结果表明,与五个最先进的网络相比,所提出的方法具有更好的抗体能力和负载域适应性,并且可以更准确地诊断12个故障类型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号