首页> 外文期刊>IEEE transactions on industrial informatics >A Composite Anomaly Detection System for Data-Driven Power Plant Condition Monitoring
【24h】

A Composite Anomaly Detection System for Data-Driven Power Plant Condition Monitoring

机译:用于数据驱动电厂状态监测的复合异常检测系统

获取原文
获取原文并翻译 | 示例

摘要

Data-driven condition monitoring is an essential function for power plant because of its potential to enhance asset longevity and reduce the operation and maintenance costs. This article explains the complicated relationship in multiplex power plant data as a mixture of temporal dependency and cross-variable association and proposes a composite anomaly detection system that incorporates the two data relationships on a probabilistic basis for more reliable power plant condition monitoring. It is able to dynamically capture the most significant relationship to develop more reliable normal condition interval, based on which the potential faults can be timely detected and the abnormal variable can be accurately identified. The proposed system was tested on a realistic thermal power plant. The testing results demonstrate its reliable condition monitoring and accurate anomaly detection performance, which necessitates the composite modeling of temporal dependency and cross-variable association in data-driven power plant condition monitoring.
机译:数据驱动状态监测是电厂的基本功能,因为它有可能增强资产寿命并降低操作和维护成本。本文介绍了多路复用电厂数据中的复杂关系,作为时间依赖性和交叉变量关联的混合,并提出了一种复合异常检测系统,其在概率基础上结合了两个数据关系,以进行更可靠的发电厂状态监测。它能够动态捕获最重要的关系,以开发更可靠的正常情况间隔,基于该间隔可以及时检测到潜在的故障,并且可以准确地识别出异常变量。所提出的系统在现实的热电厂进行了测试。测试结果证明其可靠的情况监测和准确的异常检测性能,这需要进行数据驱动发电厂状态监测中的时间依赖性和交叉变量关联的复合模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号