首页> 外文期刊>IEEE transactions on industrial informatics >Character Segmentation-Based Coarse-Fine Approach for Automobile Dashboard Detection
【24h】

Character Segmentation-Based Coarse-Fine Approach for Automobile Dashboard Detection

机译:基于字符分割的汽车仪表板粗细算法

获取原文
获取原文并翻译 | 示例

摘要

Computer vision based detection approaches are widely employed to detect or calibrate different types of meters nowadays. However, traditional detection algorithms suffer drawbacks in accuracy and adaptability upon detecting various types of automobile dashboards. Plenty of parameters of these algorithms need to be tuned to suit certain types of dashboards. Besides, theses algorithms cannot automatically read the speed value, which requires manual setting operations. In this paper, a novel approach is presented to adaptively detect different types of automobile dashboards. The contour analysis based method is first implemented to extract the connected component of the pointer. A robust character segmentation classifier, which is designed by cascading histogram of oriented gradients (HOG)/support vector machine (SVM) binary classifier, character filter as well as HOG/multiclass SVM digit classifier, is then proposed to recognize digit characters on the dashboard. Simultaneously, tick marks are then extracted based on recognition results. Finally, Newton interpolation linear relationship is established to diagnose the potential responding errors of the pointer. The experimental results show that the pointer extraction method is robust to interferences caused by connected components of digits and also that the established character segmentation classifier has a more accurate detection result. Furthermore, compared with similar algorithms, it has a significant advantage in detecting a vast majority of different dashboards without manual tuning of the parameters.
机译:如今,基于计算机视觉的检测方法被广泛用于检测或校准不同类型的仪表。然而,传统的检测算法在检测各种类型的汽车仪表盘时在准确性和适应性方面存在缺陷。这些算法的大量参数需要调整以适合某些类型的仪表板。此外,这些算法无法自动读取速度值,这需要手动设置操作。在本文中,提出了一种新颖的方法来自适应地检测不同类型的汽车仪表盘。首先实现基于轮廓分析的方法,以提取指针的连接分量。然后,提出了一种鲁棒的字符分割分类器,该分类器是通过级联定向梯度直方图(HOG)/支持向量机(SVM)二进制分类器,字符过滤器以及HOG /多类SVM数字分类器来设计的,以识别仪表板上的数字字符。同时,然后基于识别结果提取刻度线。最后,建立牛顿插值线性关系来诊断指针的潜在响应误差。实验结果表明,该指针提取方法对数字连接部分造成的干扰具有较强的鲁棒性,并且所建立的字符分割分类器具有更准确的检测结果。此外,与类似的算法相比,它在无需手动调整参数的情况下检测绝大多数不同的仪表板具有显着的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号