首页> 外文期刊>Image and Vision Computing >Learning deep features for online person tracking using non-overlapping cameras: A survey
【24h】

Learning deep features for online person tracking using non-overlapping cameras: A survey

机译:学习使用不重叠摄像机进行在线人员跟踪的深层功能:一项调查

获取原文
获取原文并翻译 | 示例

摘要

Target-agnostic person tracking and re-identification across multiple non-overlapping cameras is an open vision problem. It is the task of maintaining the correct identity of people at different time instances and possibly different cameras. This study focuses on existing algorithms that facilitate online person tracking by using discriminative spatio-temporal features from video data, and presents the open issues and future research directions. The initial take on the problem introduces person tracking as a pure association problem, where the influence of human appearance, biometric and location information on re-identification are addressed explicitly. These constraints are modeled and used to understand and associate detections in real world environments. Next, a spatio-temporal model using LSTM networks for propagating associations and recovering from errors by taking advantage of the spatial and temporal information in videos is described. The spatio-temporal context indicates a way for discriminative appearance learning. The novelty of the mentioned approaches is that they do not require to learn target-specific appearance models and collect samples to distinguish different people from each other. The methods are evaluated on large-scale tracking datasets. State-of-the-art performance is achieved using motion metadata such as person bounding box and camera number, and shows better associations for the challenging exit-entry cases. (C) 2019 Elsevier B.V. All rights reserved.
机译:跨多个不重叠摄像机的与目标无关的人员跟踪和重新标识是一个开放式视觉问题。维护不同时间点以及可能不同摄像机的人的正确身份是一项任务。这项研究的重点是现有的算法,这些算法通过使用视频数据中的时空特征来促进在线人员的跟踪,并提出了未解决的问题和未来的研究方向。该问题的最初观点将人跟踪引入为纯粹的关联问题,其中明确解决了人的外貌,生物特征和位置信息对重新识别的影响。对这些约束进行建模并用于理解和关联现实环境中的检测。接下来,将描述使用LSTM网络的时空模型,用于传播关联并通过利用视频中的时空信息从错误中恢复。时空上下文指示了一种判别外观学习的方法。所提到的方法的新颖性在于,它们不需要学习特定于目标的外观模型,也不需要收集样本来区分不同的人。该方法在大规模跟踪数据集中进行评估。使用运动数据元数据(例如人的边界框和摄像机编号)可以实现最先进的性能,并且在具有挑战性的出入境情况下显示出更好的关联性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号