首页> 外文期刊>Image and Vision Computing >Line-based object recognition using Hausdorff distance: from range images to molecular secondary structures
【24h】

Line-based object recognition using Hausdorff distance: from range images to molecular secondary structures

机译:使用Hausdorff距离的基于行的物体识别:从范围图像到分子二级结构

获取原文
获取原文并翻译 | 示例

摘要

Object recognition algorithms are fundamental tools in automatic matching of geometric shapes within a background scene. Many approaches have been proposed in the past to solve the object recognition problem. Two of the key aspects that distinguish them in terms of their practical usability are: (ⅰ) the type of input model description and (ⅱ) the comparison criteria used. In this paper we introduce a novel scheme for 3D object recognition based on line segment representation of the input shapes and comparison using the Hausdorff distance. This choice of model representation provides the flexibility to apply the scheme in different application areas. We define several variants of the Hausdorff distance to compare the models within the framework of well-defined metric spaces. We present a matching algorithm that efficiently finds a pattern in a 3D scene. The algorithm approximates a minimization procedure of the Hausdorff distance. The output error due to the approximation is guaranteed to be within a known constant bound. Practical results are presented for two classes of objects: (ⅰ) polyhedral shapes extracted from segmented range images and (ⅱ) secondary structures of large molecules. In both cases the use of our approximate algorithm allows to match correctly the pattern in the background while achieving the efficiency necessary for practical use of the scheme. In particular the performance is improved substantially with minor degradation of the quality of the matching.
机译:对象识别算法是自动匹配背景场景中的几何形状的基本工具。过去已经提出了许多方法来解决对象识别问题。在实用性方面使它们与众不同的两个关键方面是:(ⅰ)输入模型描述的类型和(ⅱ)使用的比较标准。在本文中,我们介绍了一种基于输入形状的线段表示并使用Hausdorff距离进行比较的3D对象识别新方案。模型表示的这种选择提供了将方案应用于不同应用领域的灵活性。我们定义了Hausdorff距离的几种变体,以在定义明确的度量空间框架内比较模型。我们提出了一种匹配算法,可以有效地在3D场景中找到图案。该算法近似于Hausdorff距离的最小化过程。保证由于近似引起的输出误差在已知的常数范围内。给出了针对两类物体的实际结果:(ⅰ)从分段距离图像中提取的多面体形状和(ⅱ)大分子的二级结构。在这两种情况下,我们近似算法的使用都可以在背景中正确匹配模式,同时达到实际使用该方案所需的效率。特别是,在匹配质量略有下降的情况下,性能得到了显着改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号