首页> 外文期刊>Image and Vision Computing >Scene Aware Detection and Block Assignment Tracking in crowded scenes
【24h】

Scene Aware Detection and Block Assignment Tracking in crowded scenes

机译:拥挤场景中的场景感知检测和块分配跟踪

获取原文
获取原文并翻译 | 示例

摘要

How far can human detection and tracking go in real world crowded scenes? Many algorithms often fail in such scenes due to frequent and severe occlusions as well as viewpoint changes. In order to handle these difficulties, we propose Scene Aware Detection (SAD) and Block Assignment Tracking (BAT) that incorporate with some available scene models (e.g. background, layout, ground plane and camera models). The SAD is proposed for accurate detection through utilizing 1) camera model to deal with viewpoint changes by rectifying sub-images, 2) a structural filter approach to handle occlusions based on a feature sharing mechanism in which a three-level hierarchical structure is built for humans, and 3) foregrounds for pruning negative and false positive samples and merging intermediate detection results. Many detection or appearance based tracking systems are prone to errors in occluded scenes because of failures of detectors and interactions of multiple objects. Differently, the BAT formulates tracking as a block assignment process, where blocks with the same label form the appearance of one object. In the BAT, we model objects on two levels, one is the ensemble level to measure how it is like an object by discriminative models, and the other one is the block level to measure how it is like a target object by appearance and motion models. The main advantage of BAT is that it can track an object even when all the part detectors fail as long as the object has assigned blocks. Extensive experiments in many challenging real world scenes demonstrate the efficiency and effectiveness of our approach.
机译:人体检测和跟踪在现实世界拥挤的场景中能走多远?由于频繁和严重的遮挡以及视点变化,许多算法通常在此类场景中失败。为了解决这些困难,我们提出了场景感知检测(SAD)和块分配跟踪(BAT),它们结合了一些可用的场景模型(例如背景,布局,地平面和相机模型)。 SAD的提出是为了通过以下方面进行精确检测:1)相机模型通过校正子图像来处理视点变化; 2)基于特征共享机制的结构滤波器方法来处理遮挡,在该功能共享机制中,构建了三级层次结构人类,以及3)修剪阴性和假阳性样品以及合并中间检测结果的前景。由于检测器的故障和多个物体的相互作用,许多基于检测或外观的跟踪系统在被遮挡的场景中易于出错。不同的是,BAT将跟踪公式化为一个块分配过程,其中具有相同标签的块形成一个对象的外观。在BAT中,我们在两个级别上对对象进行建模,一个是通过判别模型来度量对象的整体状态的集成级别,另一个是通过外观和运动模型来度量对象的对象状态的块级别。 。 BAT的主要优点是,即使所有零件检测器都发生故障,只要对象已分配了块,它也可以跟踪对象。在许多具有挑战性的现实世界场景中进行的大量实验证明了我们方法的有效性和有效性。

著录项

  • 来源
    《Image and Vision Computing》 |2012年第5期|p.292-305|共14页
  • 作者单位

    Computer Science and Technology Department, Tsinghua University, Beijing, China;

    Computer Science and Technology Department, Tsinghua University, Beijing, China;

    Computer Science and Technology Department, Tsinghua University, Beijing, China;

    Electronic Engineering Department, Tsinghua University, Beijing, China;

    Development Center, OMRON Social Solutions Co., LTD, Kyoto, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    visual surveillance; object detection; object tracking; particle filter;

    机译:视觉监控;物体检测目标跟踪;粒子过滤器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号