首页> 外文期刊>Image and Vision Computing >Attribute-based learning for gait recognition using spatio-temporal interest points
【24h】

Attribute-based learning for gait recognition using spatio-temporal interest points

机译:基于时空兴趣点的基于属性的步态识别学习

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a new method to extract a gait feature from a raw gait video directly. The Space-Time Interest Points (STIPs) are detected where there are significant movements of human body along both spatial and temporal directions in local spatio-temporal volumes of a raw gait video. Then, a histogram of STIP descriptors (HSD) is constructed as a gait feature. In the classification stage, the support vector machine (SVM) is applied to recognize gaits based on HSDs. In this study, the standard multi-class (i.e. multiple subjects) classification can often be computationally infeasible at test phase, when gait recognition is performed by using every possible classifiers (i.e. SVM models) trained for all individual subjects. In this paper, the attribute-based classification is applied to reduce the number of SVM models needed for recognizing each probe gait This process will significantly reduce the test-time computational complexity and also retain or even improve the recognition accuracy. When compared with other existing methods in the literature, the proposed method is shown to have the promising performance for the case of normal walking, and the outstanding performance for the cases of walking with variations such as walking with carrying a bag and walking with varying a type of clothes.
机译:本文提出了一种直接从原始步态视频中提取步态特征的新方法。时空兴趣点(STIP)在原始步态视频的局部时空体积中,人体在空间和时间方向上都有明显运动的地方进行检测。然后,将STIP描述符(HSD)的直方图构造为步态特征。在分类阶段,将支持向量机(SVM)用于基于HSD的步态识别。在这项研究中,当通过使用针对所有个体主题训练的每种可能的分类器(即SVM模型)执行步态识别时,标准的多类别(即多个主题)分类通常在测试阶段在计算上不可行。在本文中,基于属性的分类被用于减少识别每个探针步态所需的SVM模型的数量。此过程将显着降低测试时间的计算复杂度,并保留甚至提高识别精度。与文献中的其他现有方法相比,所提出的方法在正常行走的情况下具有令人鼓舞的性能,而在诸如随身携带书包的行走和随身携带物品的行走等变化的情况下具有出色的性能。衣服的类型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号