首页> 外文期刊>Pattern recognition letters >Gait metric learning Siamese network exploiting dual of spatio-temporal 3D-CNN intra and LSTM based inter gait-cycle-segment features
【24h】

Gait metric learning Siamese network exploiting dual of spatio-temporal 3D-CNN intra and LSTM based inter gait-cycle-segment features

机译:步态度量学习暹罗网络,利用时空3D-CNN内部和基于LSTM的步态周期片段之间的双重特征

获取原文
获取原文并翻译 | 示例

摘要

Gait recognition is a non-invasive biometric technology that can be used to identify humans in surveillance systems. It is based on the style or manner in which a person walk and can be realized with minimal amount of individual cooperation for its acquisition. However, it may causes many challenges in the form of varying viewpoints, carrying conditions and clothing variations. To tackle such limitations, we present a view-invariant gait recognition network that divide the gait cycle into five segments (GCS). The intra gait-cycle-segment (GCS) convolutional spatio-temporal relationships has been obtained by employing a 3D-CNN via. transfer learning mechanism. Later, a stacked LSTM has been trained over spatio-temporal features to learn the long and short relationship between inter gait-cycle-segment.The first step in our work is data pre-processing, in which we create silhouette stereo map (SSM) from the binary silhouettes of the gait video frame and sampled each video into a fixed 80 frames. These 80 frames SSM have been divided into 5 gait-cycle-segments (GCS) of 16 frames each. From each of these GCS, we extract spatio-temporal features using a pre-trained 3-D CNN. These features have been concatenated temporally, and an LSTM cell is used to learn the long-term dependencies between each GCS. Finally, the required class scores are computed by averaging (to handle noise) the output generated by LSTM. The network is trained in an end-to-end fashion using triplet loss function so as to learn the gait metric well using only the hard triplets. All the experiments are carried out on publicly available CASIA-B and OU-ISIR gait dataset. From the experimental results, it has been indicated that the proposed network performs better than the current state-of-the-art gait recognition systems. (C) 2019 Elsevier B.V. All rights reserved.
机译:步态识别是一种非侵入性生物识别技术,可用于在监视系统中识别人。它基于人走动的风格或方式,并且可以以最少的个人协作来实现其实现。但是,它可能会以不同观点,携带条件和衣服变化等形式带来许多挑战。为了解决这种局限性,我们提出了一种视图不变的步态识别网络,该网络将步态周期分为五个部分(GCS)。步态内循环节段(GCS)的卷积时空关系已通过使用3D-CNN过孔获得。转移学习机制。后来,对堆叠的LSTM进行了时空特征训练,以学习步态周期段之间的长短关系。我们工作的第一步是数据预处理,其中我们创建轮廓立体图(SSM)从步态视频帧的二进制轮廓中提取出来,并将每个视频采样到固定的80帧中。这80帧SSM已被分为5个步态周期段(GCS),每个段16帧。从每个这些GCS中,我们使用预先训练的3-D CNN提取时空特征。这些功能已在时间上串联在一起,并且LSTM单元用于了解每个GCS之间的长期依赖性。最后,通过对LSTM生成的输出求平均值(以处理噪声)来计算所需的类分数。使用三重态损失功能以端到端的方式训练网络,以便仅使用硬三联体就能很好地学习步态度量。所有实验均在可公开获得的CASIA-B和OU-ISIR步态数据集上进行。从实验结果表明,所提出的网络的性能优于当前的最新步态识别系统。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号