首页> 外文期刊>Pattern recognition letters >Gait metric learning Siamese network exploiting dual of spatio-temporal 3D-CNN intra and LSTM based inter gait-cycle-segment features
【24h】

Gait metric learning Siamese network exploiting dual of spatio-temporal 3D-CNN intra and LSTM based inter gait-cycle-segment features

机译:步态公制学习暹罗网络利用两种时空3D-CNN intra和LSTM基于间步态循环段特征的

获取原文
获取原文并翻译 | 示例

摘要

Gait recognition is a non-invasive biometric technology that can be used to identify humans in surveillance systems. It is based on the style or manner in which a person walk and can be realized with minimal amount of individual cooperation for its acquisition. However, it may causes many challenges in the form of varying viewpoints, carrying conditions and clothing variations. To tackle such limitations, we present a view-invariant gait recognition network that divide the gait cycle into five segments (GCS). The intra gait-cycle-segment (GCS) convolutional spatio-temporal relationships has been obtained by employing a 3D-CNN via. transfer learning mechanism. Later, a stacked LSTM has been trained over spatio-temporal features to learn the long and short relationship between inter gait-cycle-segment.The first step in our work is data pre-processing, in which we create silhouette stereo map (SSM) from the binary silhouettes of the gait video frame and sampled each video into a fixed 80 frames. These 80 frames SSM have been divided into 5 gait-cycle-segments (GCS) of 16 frames each. From each of these GCS, we extract spatio-temporal features using a pre-trained 3-D CNN. These features have been concatenated temporally, and an LSTM cell is used to learn the long-term dependencies between each GCS. Finally, the required class scores are computed by averaging (to handle noise) the output generated by LSTM. The network is trained in an end-to-end fashion using triplet loss function so as to learn the gait metric well using only the hard triplets. All the experiments are carried out on publicly available CASIA-B and OU-ISIR gait dataset. From the experimental results, it has been indicated that the proposed network performs better than the current state-of-the-art gait recognition systems. (C) 2019 Elsevier B.V. All rights reserved.
机译:步态识别是一种非侵入性生物识别技术,可用于识别监视系统中的人类。它是基于人行道的风格或方式,并且可以以最少的单独合作实现其采集。然而,它可能以不同的观点,携带条件和衣物变化的形式导致许多挑战。为了解决这些限制,我们介绍了一种视图 - 不变的步态识别网络,将步态周期分为五个部分(GCS)。通过使用3D-CNN通孔来获得帧内步态周期段(GCS)卷积的时空关系。转移学习机制。稍后,堆叠的LSTM已经过了几种时空特征,以学习间步态周期段之间的长短关系。我们工作中的第一步是数据预处理,我们创建了剪影立体声地图(SSM)从步态视频帧的二进制剪影并将每个视频采样到固定的80帧中。这80帧SSM已被分为5个步态周期段(GCS),每个段为16帧。来自这些GCS中的每一个,我们使用预先训练的3-D CNN提取时空特征。这些特征在时间上邻接,并且使用LSTM小区来学习每个GC之间的长期依赖性。最后,通过平均(处理噪声)由LSTM生成的输出进行平均来计算所需的类别。使用三联损耗功能,网络以端到端的方式培训,以便仅使用硬三态度来学习步态公制井。所有实验都在公开可用的Casia-B和Ou-Isir步态数据集进行。从实验结果中,已经表明,所提出的网络比当前的最先进的步态识别系统更好。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号