首页> 外文期刊>Image Processing, IET >Combining firefly algorithm and Bayesian classifier: new direction for automatic multilabel image annotation
【24h】

Combining firefly algorithm and Bayesian classifier: new direction for automatic multilabel image annotation

机译:结合萤火虫算法和贝叶斯分类器:自动多标签图像标注的新方向

获取原文
获取原文并翻译 | 示例

摘要

As digital images are increasing exponentially; it is very attractive to develop more effective machine learning frameworks for automatic image annotation. In order to address the most prominent issues (huge inter-concept visual similarity and huge intra-concept visual diversity) more effectively, an inter-related non-parametric Bayesian classifier training framework to support multi-label image annotation is developed. For this purpose, an image is viewed as a bag, and its instances are the over-segmented regions within it found automatically with an adopted Otsu's method segmentation algorithm. Here firefly algorithm (FA) is utilised to enhance Otsu's method in the direction of finding optimal multilevel thresholds using the maximum variance intra-clusters. FA has high convergence speed and less computation rate as compared with some evolutionary algorithms. By generating blobs, the extracted features for segmented regions, the concepts which are learned by the classifier tend to relate textually to the words which occur most often in the data and visually to the easiest to recognise segments. This allowing the opportunity to assign a word to each object (localised labelling). Extensive experiments on Corel benchmark image datasets will validate the effectiveness of the proposed solution to multi-label image annotation and label ranking problem.
机译:随着数字图像呈指数增长;为自动图像注释开发更有效的机器学习框架非常有吸引力。为了更有效地解决最突出的问题(巨大的概念间视觉相似性和巨大的概念内视觉多样性),开发了一种相互关联的非参数贝叶斯分类器训练框架,以支持多标签图像注释。为此,将图像视为包,并且其实例是通过采用的Otsu方法分割算法自动找到的图像中的过度分割区域。在这里,萤火虫算法(FA)用于在使用最大方差群内发现最佳多级阈值的方向上增强Otsu方法。与某些进化算法相比,FA具有较高的收敛速度和较少的计算速度。通过生成斑点,为分段区域提取的特征,分类器学习的概念往往在文本上与数据中最常出现的单词相关,而在视觉上与最容易识别的片段相关。这样就可以给每个对象分配一个单词(本地化标签)。在Corel基准图像数据集上进行的大量实验将验证所提出的解决方案对多标签图像注释和标签排名问题的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号