首页> 外文期刊>Image Processing, IEEE Transactions on >Structured Max-Margin Learning for Inter-Related Classifier Training and Multilabel Image Annotation
【24h】

Structured Max-Margin Learning for Inter-Related Classifier Training and Multilabel Image Annotation

机译:用于相互关联的分类器训练和多标签图像注释的结构化最大余量学习

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a structured max-margin learning algorithm is developed to achieve more effective training of a large number of inter-related classifiers for multilabel image annotation application. To leverage multilabel images for classifier training, each multilabel image is partitioned into a set of image instances (image regions or image patches) and an automatic instance label identification algorithm is developed to assign multiple labels (which are given at the image level) to the most relevant image instances. A K-way min-max cut algorithm is developed for automatic instance clustering and kernel weight determination, where multiple base kernels are seamlessly combined to address the issue of huge intra-concept visual diversity more effectively. Second, a visual concept network is constructed for characterizing the inter-concept visual similarity contexts more precisely in the high-dimensional multimodal feature space. The visual concept network is used to determine the inter-related learning tasks directly in the feature space rather than in the label space because feature space is the common space for classifier training and image classification. Third, a parallel computing platform is developed to achieve more effective learning of a large number of inter-related classifiers over the visual concept network. A structured max-margin learning algorithm is developed by incorporating the visual concept network, max-margin Markov networks and multitask learning to address the issue of huge inter-concept visual similarity more effectively. By leveraging the inter-concept visual similarity contexts for inter-related classifier training, our structured max-margin learning algorithm can significantly enhance the discrimination power of the inter-related classifiers. Our experiments have also obtained very positive results for a large number of object classes and image concepts.
机译:本文提出了一种结构化的最大余量学习算法,以实现对多标签图像标注应用中大量相互关联的分类器的更有效训练。为了利用多标签图像进行分类器训练,将每个多标签图像划分为一组图像实例(图像区域或图像块),并开发了自动实例标签识别算法,以将多个标签(在图像级别指定)分配给最相关的图像实例。针对自动实例聚类和内核权重确定,开发了一种K向最小-最大剪切算法,其中将多个基本内核无缝组合,以更有效地解决概念内视觉多样性大的问题。其次,构建视觉概念网络,以在高维多峰特征空间中更精确地表征概念间的视觉相似性上下文。视觉概念网络用于直接在特征空间而非标签空间中确定相互关联的学习任务,因为特征空间是分类器训练和图像分类的公共空间。第三,开发了并行计算平台以通过视觉概念网络更有效地学习大量相互关联的分类器。通过结合视觉概念网络,最大余量马尔可夫网络和多任务学习,开发了一种结构化的最大余量学习算法,以更有效地解决巨大的概念间视觉相似性问题。通过利用概念间的视觉相似性上下文进行相互关联的分类器训练,我们的结构化最大边距学习算法可以显着增强相互关联的分类器的识别能力。对于大量的对象类别和图像概念,我们的实验也获得了非常积极的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号