首页> 外文会议>1st ACM workshop on large-scale multimedia retrieval and mining 2009 >Leveraging Large-Scale Weakly-Tagged Images to Train Inter-Related Classifiers for Multi-Label Annotation
【24h】

Leveraging Large-Scale Weakly-Tagged Images to Train Inter-Related Classifiers for Multi-Label Annotation

机译:利用大规模弱标记图像训练相互关联的分类器进行多标签注释

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we have developed a new multi-label multitask learning framework to leverage large-scale weakly-tagged images for inter-related classifier training. A novel image and tag cleansing algorithm is developed for tackling the issues of spam, synonymous, loose and ambiguous tags and obtain more relevant images. The visual concept network is generated to characterize the inter-concept visual similarity contexts precisely and determine the inter-related learning tasks automatically. Through a multi-label multi-task learning paradigm, our structured max-margin learning algorithm can leverage both large-scale weakly-tagged images and the visual concept network to learn large amounts of inter-related classifiers for supporting multi-label image annotation.
机译:在本文中,我们开发了一种新的多标签多任务学习框架,以利用大规模的弱标记图像进行相互关联的分类器训练。开发了一种新颖的图像和标签清除算法,以解决垃圾邮件,同义词,宽松和模棱两可的标签问题,并获得更多相关图像。生成视觉概念网络以精确表征概念间的视觉相似性上下文,并自动确定相互关联的学习任务。通过多标签多任务学习范例,我们的结构化最大利润学习算法可以利用大规模的弱标记图像和视觉概念网络来学习大量相互关联的分类器,以支持多标签图像注释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号