首页> 外文期刊>Image Processing, IET >Blind quality assessment for 3D synthesised video with binocular asymmetric distortion
【24h】

Blind quality assessment for 3D synthesised video with binocular asymmetric distortion

机译:双目不对称失真3D合成视频的盲质质量评估

获取原文
获取原文并翻译 | 示例

摘要

During the process of watching 3D synthesised video (3D-SV) and switching viewpoints, there is a case of asymmetric distortion, the left(right) viewpoint is a synthesised video generated by rendering technique, and the right(left) viewpoint is a real video taken by the camera. How to accurately estimate the quality of 3D-SV with binocular asymmetric distortions is a new and challenging problem. Aiming at this problem, a blind quality assessment method for 3D-SV with binocular asymmetric distortions is proposed. Firstly, the local edge deformations of synthesised videos at different scales are measured by calculating their standard deviations. Secondly, the global naturalness of synthesised videos is computed by analysing their natural statistical characteristics. Thirdly, a strategy for fusing left and right quality scores is proposed, which considers their texture information in different directions. Finally, the random forest is used to obtain an objective quality score. The experimental results show the superiority of the proposed method on asymmetry 3D-SV database.
机译:在观看3D合成视频(3D-SV)和切换视点的过程中,存在不对称失真的情况,左(右)视点是通过渲染技术生成的合成视频,右(左)视点是一个真实的摄像机拍摄的视频。如何准确估计3D-SV与双目不对称扭曲的质量是一个新的和具有挑战性的问题。针对这个问题,提出了一种具有双目不对称扭曲的3D-SV的盲质量评估方法。首先,通过计算标准偏差来测量不同尺度处的合成视频的局部边缘变形。其次,通过分析其自然统计特征来计算合成视频的全局自然。第三,提出了一种融合左右质量分数的策略,这考虑了它们在不同方向上的纹理信息。最后,随机森林用于获得客观质量得分。实验结果表明了在不对称3D-SV数据库上提出的方法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号