首页> 外文期刊>Neurocomputing >Blind 3D image quality assessment based on self-similarity of binocular features
【24h】

Blind 3D image quality assessment based on self-similarity of binocular features

机译:基于双目特征自相似性的盲3D图像质量评估

获取原文
获取原文并翻译 | 示例

摘要

The perceived quality assessment of three-dimensional (3D) images has emerged as a challenging research topic in the field of 3D imaging in recent years. Especially, blind quality assessment of 3D images encounters challenges due to prior information about the original 3D images is not available. In this paper, we propose a blind 3D image quality assessment (IQA) metric that utilizes the self-similarity of binocular features. The primary contribution of this study is that the proposed metric considers the binocular visual property and the local visual structural property for blind 3D-IQA. We calculate the self-similarity of binocular rivalry response as well as binocular orientation selectivity in the distorted 3D image. We then extract the inter- and intra-pixel binocular quality-predictive features from these self-similarity measures. Following feature extraction, we use machine learning based on the support vector regression (SVR) procedure to drive the overall quality score. Our results on publicly accessible 3D databases confirmed that the proposed metric is highly efficient and robust.
机译:近年来,对3D图像的感知质量评估已成为3D成像领域中具有挑战性的研究主题。特别地,由于关于原始3D图像的先前信息不可用,对3D图像的盲质量评估遇到挑战。在本文中,我们提出了一种利用双目特征的自相似性的盲3D图像质量评估(IQA)度量。这项研究的主要贡献在于,提出的度量标准考虑了盲3D-IQA的双目视觉特性和局部视觉结构特性。我们计算失真的3D图像中双眼竞争反应的自相似性以及双眼定向的选择性。然后,我们从这些自相似性度量中提取像素间和像素内双目质量预测特征。在特征提取之后,我们使用基于支持向量回归(SVR)程序的机器学习来提高整体质量得分。我们在可公开访问的3D数据库上的结果证实了所提出的指标是高效且可靠的。

著录项

  • 来源
    《Neurocomputing》 |2017年第8期|128-134|共7页
  • 作者单位

    Zhejiang Univ Sci & Technol, Sch Informat & Elect Engn, Hangzhou 310023, Zhejiang, Peoples R China|Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China;

    Zhejiang Univ Sci & Technol, Sch Informat & Elect Engn, Hangzhou 310023, Zhejiang, Peoples R China;

    Zhejiang Univ Sci & Technol, Sch Informat & Elect Engn, Hangzhou 310023, Zhejiang, Peoples R China;

    Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China;

    Zhejiang Univ Sci & Technol, Sch Informat & Elect Engn, Hangzhou 310023, Zhejiang, Peoples R China;

    Zhejiang Univ Sci & Technol, Sch Informat & Elect Engn, Hangzhou 310023, Zhejiang, Peoples R China;

    Ningbo Univ, Coll Sci & Technol, Ningbo 315211, Zhejiang, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    3D image quality assessment; Binocular visual property; Self-similarly; Inter- and intra-pixel features;

    机译:3D图像质量评估;双目视觉特性;自相似;像素间和像素内特征;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号