首页> 外文期刊>Image Processing, IET >Robust part-based visual tracking via adaptive collaborative modelling
【24h】

Robust part-based visual tracking via adaptive collaborative modelling

机译:通过自适应协作建模的基于强大的基于零件的视觉跟踪

获取原文
获取原文并翻译 | 示例

摘要

Discriminative correlation filter-based tracking algorithms have recently shown impressive performance on benchmark data sets. However, visual tracking is still a challenging task in the case of partial occlusions, irregular deformations and so on. In this study, the authors intend to solve these issues by introducing the adaptive collaborative model into part-based tracking. First, instead of a simple linear superposition, the collaborative strategy they proposed combines the template model and colour-based model adaptively and relies on the strengths of both to promote the accuracy. Second, we utilise the voting strategy to figure out the final object position from reliable parts, and the motion information is used in evaluation for reliable parts to enable the tracker to be robust in various situations. Third, the authors utilise a discriminative multi-scale estimate method to solve the problem of scale variations. Finally, they introduce a dimensionality reduction method to limit the computational complexity of the tracker. Abundant experiments demonstrate that the tracker performs superiorly against several advanced algorithms on both the Online Tracking Benchmark (OTB) 2013 and OTB2015 data sets while maintaining the high frame rates.
机译:基于判别相关滤波器的跟踪算法最近在基准数据集中显示了令人印象深刻的性能。然而,在部分闭塞,不规则变形等的情况下,视觉跟踪仍然是一个具有挑战性的任务。在这项研究中,作者打算通过将自适应协同模型引入基于部分的跟踪来解决这些问题。首先,而不是简单的线性叠加,他们提出的协作策略适用于模板模型和颜色的模型,并依赖于促进准确性的优点。其次,我们利用投票策略来弄清任何可靠部件的最终对象位置,并且运动信息用于评估以获得可靠的部分,使得跟踪器能够在各种情况下稳健。第三,作者利用鉴别的多尺度估计方法来解决规模变化的问题。最后,它们介绍了一种维度减少方法以限制跟踪器的计算复杂性。丰富的实验表明,跟踪器在在线跟踪基准(OTB)2013和OTB2015数据集中的几个高级算法上方执行,同时保持高帧速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号