首页> 外文期刊>Image Processing, IET >Appearance model update based on online learning and soft-biometrics traits for people re-identification in multi-camera environments
【24h】

Appearance model update based on online learning and soft-biometrics traits for people re-identification in multi-camera environments

机译:基于在线学习和软生物学特征的外观模型更新,可在多相机环境中重新识别人

获取原文
获取原文并翻译 | 示例

摘要

Intelligent surveillance systems in multi-camera environments pose a hard-open problem for computer vision. The way the people look changes inside and also among cameras, so people re-identification task can be largely improved collecting data about people already identified and take advantage of it as time advances in surveillance video. Furthermore, a camera change or a slight change in the objective traits may require the complete re-formulation of the appearance models. In this paper, we propose several heuristics for updating the appearance model in a multi-camera surveillance environment. Through these heuristics, the subject's appearance model is updated across different time and environmental conditions. The update process is carried out primarily in three different aspects: 1) based on time lapses, 2) based on the change of camera, and 3) based on the automatic selection of the most representative samples selected through decision functions of the classifier. The proposed system focuses on video surveillance environments, that is, the objective is to identify an individual across the set of cameras in the surveillance area, the comparison considers only those people that share time and space. We used four public benchmarks to test our claims; the results confirm the importance of continuous appearance model's updating.
机译:多摄像机环境中的智能监控系统为计算机视觉带来了一个难题。人们的外观方式在摄像机内部以及摄像机之间都会发生变化,因此可以大大改善人们的重新识别任务,因为它可以收集有关已识别人员的数据,并随着监控视频的发展而利用它。此外,相机的变化或客观特征的轻微变化可能需要外观模型的完整重新制定。在本文中,我们提出了几种启发式方法来更新多摄像机监视环境中的外观模型。通过这些试探法,可以在不同的时间和环境条件下更新对象的外观模型。更新过程主要在三个不同方面进行:1)基于时间流逝; 2)基于相机的更改; 3)基于通过分类器的决策功能自动选择最具代表性的样本。拟议的系统侧重于视频监视环境,也就是说,目标是在监视区域内的一组摄像机中识别一个人,比较仅考虑共享时间和空间的人员。我们使用了四个公开基准来测试我们的要求;结果证实了连续外观模型更新的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号