首页> 外文期刊>Image Processing, IET >SUGAMAN: describing floor plans for visually impaired by annotation learning and proximity-based grammar
【24h】

SUGAMAN: describing floor plans for visually impaired by annotation learning and proximity-based grammar

机译:SUGAMAN:描述通过注释学习和基于接近度的语法为视障者准备的平面图

获取原文
获取原文并翻译 | 示例

摘要

In this study, the authors propose a framework SUGAMAN (Supervised and Unified framework using Grammar and Annotation Model for Access and Navigation). SUGAMAN is a Hindi word meaning 'easy passage from one place to another'. SUGAMAN synthesises textual description from a given floor plan image, usable by visually impaired to navigate by understanding the arrangement of rooms and furniture. It is the first framework for describing a floor plan and giving direction for obstacle-free movement within a building. The model learns five classes of room categories from 1355 room image samples under a supervised learning paradigm. These learned annotations are fed into a description synthesis framework to yield a holistic description of a floor plan image. Authors demonstrate the performance of various supervised classifiers on room learning and provided a comparative analysis of system generated and human-written descriptions. The contribution of this study includes a novel framework for description generation from document images with graphics while proposing a new feature representing the floor plans, text annotations for a publicly available data set, and an algorithm for door to door obstacle avoidance navigation. This work can be applied to areas like understanding floor plans and design of historical monuments, and retrieval.
机译:在这项研究中,作者提出了SUGAMAN框架(使用用于访问和导航的语法和注释模型的监督和统一框架)。 SUGAMAN是北印度语单词,意为“轻松地从一个地方到达另一个地方”。苏加曼(SUGAMAN)从给定的平面图图像中合成文字描述,视障人士可通过了解房间和家具的布置来进行导航。它是用于描述平面图并为建筑物内无障碍运动提供方向的第一个框架。该模型在监督学习范式下从1355个房间图像样本中学习了五类房间类别。将这些学习到的注释输入到描述合成框架中,以生成平面图图像的整体描述。作者演示了各种监督分类器在房间学习中的性能,并对系统生成的描述和人工编写的描述进行了比较分析。这项研究的贡献包括一个新颖的框架,用于从带有图形的文档图像生成描述,同时提出一个代表楼层平面图的新功能,可公开获取的数据集的文本注释,以及用于门对门避障导航的算法。这项工作可以应用于诸如了解平面图和设计历史古迹以及进行检索等领域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号