首页> 外文期刊>Image Processing, IET >Endmember extraction from hyperspectral imagery based on QR factorisation using givens rotations
【24h】

Endmember extraction from hyperspectral imagery based on QR factorisation using givens rotations

机译:使用给定旋转基于QR分解从高光谱图像中提取端成员

获取原文
获取原文并翻译 | 示例

摘要

Hyperspectral images are mixtures of spectra of materials in a scene. Accurate analysis of hyperspectral image requires spectral unmixing. The result of spectral unmixing is the material spectral signatures and their corresponding fractions. The materials are called endmembers. Endmember extraction equals to acquire spectral signatures of the materials. In this study, the authors propose a new hyperspectral endmember extraction algorithm for hyperspectral image based on QR factorisation using Givens rotations (EEGR). Evaluation of the algorithm is demonstrated by comparing its performance with two popular endmember extraction methods, which are vertex component analysis (VCA) and maximum volume by householder transformation (MVHT). Both simulated mixtures and real hyperspectral image are applied to the three algorithms, and the quantitative analysis of them is presented. EEGR exhibits better performance than VCA and MVHT. Moreover, EEGR algorithm is convenient to implement parallel computing for real-time applications based on the hardware features of Givens rotations.
机译:高光谱图像是场景中材料光谱的混合。准确分析高光谱图像需要光谱分解。光谱解混的结果是物质的光谱特征及其相应的分数。这些材料称为末端构件。端基萃取等于获得材料的光谱特征。在这项研究中,作者提出了一种新的针对高光谱图像的高光谱末端成员提取算法,该算法基于基于Givens旋转(EEGR)的QR分解。通过与两种流行的端成员提取方法(即顶点分量分析(VCA)和通过户主变换的最大体积(MVHT))进行比较,证明了该算法的性能。将模拟的混合图像和真实的高光谱图像都应用于这三种算法,并对它们进行了定量分析。 EEGR具有比VCA和MVHT更好的性能。此外,基于纪梵斯(Givens)旋转的硬件功能,EEGR算法很方便为实时应用实现并行计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号