首页> 外文期刊>Neurocomputing >An image-based endmember bundle extraction algorithm using reconstruction error for hyperspectral imagery
【24h】

An image-based endmember bundle extraction algorithm using reconstruction error for hyperspectral imagery

机译:基于图像误差的重构误差端图像束提取算法

获取原文
获取原文并翻译 | 示例

摘要

Although many endmember extraction algorithms have been proposed for hyperspectral images in recent years, there are still some problems in endmember extraction which would lead to inaccurate endmember extraction. One important problem is the variation in endmember spectral signatures due to spatial and temporal variability in the condition of scene components and differential illumination conditions. One category to handle endmember variability is considering endmembers as the bundles. In other words, each endmember of a material is represented by a set or "bundle" of spectra. In this article, to account for the variation in endmember spectral signatures, an image-based endmember bundle extraction algorithm using reconstruction error for hyperspectral remote sensing imagery is proposed. In order to demonstrate the performance of the proposed method, the current state-of-the-art endmember bundle extraction methods are used for comparison. Experiments with both synthetic and real hyperspectral data sets indicate that the proposed method shows a significant improvement over the current state-of-the-art endmember bundle extraction methods and perform best in subsequent unmixing. (C) 2015 Elsevier B.V. All rights reserved.
机译:尽管近年来已经提出了许多用于高光谱图像的端成员提取算法,但是在端成员提取中仍然存在一些问题,这将导致不正确的端成员提取。一个重要的问题是由于场景分量和差分照明条件下的空间和时间变化而导致的最终成员光谱特征的变化。处理终端成员可变性的一种类别是将终端成员视为捆绑。换句话说,材料的每个端部构件由一组或一组“光谱”表示。在本文中,考虑到端成员光谱特征的变化,提出了一种基于图像误差的基于重构误差的端成员束提取算法。为了证明所提出方法的性能,将当前最新的端构件束提取方法用于比较。使用合成和真实高光谱数据集进行的实验表明,所提出的方法相对于当前的最新端成员束提取方法显示出显着改进,并且在随后的分解中表现最佳。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号