首页> 外文期刊>IEICE Transactions on Information and Systems >A New Texture Feature Based on PCA Pattern Maps and Its Application to Image Retrieval
【24h】

A New Texture Feature Based on PCA Pattern Maps and Its Application to Image Retrieval

机译:基于PCA模式图的新纹理特征及其在图像检索中的应用

获取原文
获取原文并翻译 | 示例

摘要

We propose a novel pixel pattern-based approach for texture classification, which is independent of the variance of illumination. Gray scale images are first transformed into pattern maps in which edges and lines, used for characterizing texture information, are classified by pattern matching. We employ principal component analysis (PCA) which is widely applied to feature extraction. We use the basis functions learned through PCA as templates for pattern matching. Using PCA pattern maps, the feature vector is comprised of the numbers of the pixels belonging to a specific pattern. The effectiveness of the new feature is demonstrated by applications to the image retrievals of the Brodatz texture database. Comparisons with multichannel and multiresolution features indicate that the new feature is quite time saving, free of the influence of illumination, and has comparable accuracy.
机译:我们提出了一种新颖的基于像素模式的纹理分类方法,该方法与照明的方差无关。首先将灰度图像转换成图案图,在其中通过图案匹配对用于表征纹理信息的边缘和线条进行分类。我们采用了广泛应用于特征提取的主成分分析(PCA)。我们将通过PCA学习的基本功能用作模式匹配的模板。使用PCA模式图,特征向量由属于特定模式的像素数组成。应用到Brodatz纹理数据库的图像检索中证明了新功能的有效性。与多通道和多分辨率功能的比较表明,该新功能可节省大量时间,不受照明的影响,并且具有相当的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号