【24h】

VLSI Layout of Trees into Grids of Minimum Width

机译:树的VLSI布局为最小宽度的网格

获取原文
获取原文并翻译 | 示例

摘要

In this paper we consider the VLSI layout (i.e., Manhattan layout) of graphs into grids with minimum width (i.e., the length of the shorter side of a grid) as well as with minimum area. The layouts into minimum area and minimum width are equivalent to those with the largest possible aspect ratio of a minimum area layout. Thus such a layout has a merit that, by "folding" the layout, a layout of all possible aspect ratio can be obtained with increase of area within a small constant factor. We show that an N-vertex tree with layout-width k (i.e., the minimum width of a grid into which the tree can be laid out is k) can be laid out into a grid of area O(N) and width O(k). For binary tree layouts, we give a detailed trade-off between area and width: an N-vertex binary tree with layout-width k can be laid out into area O(k+α/1+αN) and width k + α, where α is an arbitrary integer with 0 ≤ α ≤ N~(1/2), and the area is existentially optimal for any k ≥ 1 and α ≥ 0. This implies that ? = Ω(k) is essential for a layout of a graph into optimal area. The layouts proposed here can be constructed in polynomial time. We also show that the problem of laying out a given graph G into given area and width, or equivalently, into given length and width is NP-hard even if G is restricted to a binary tree.
机译:在本文中,我们将图形的VLSI布局(即曼哈顿布局)考虑为具有最小宽度(即,网格的较短边的长度)以及最小面积的网格。最小面积和最小宽度的布局等同于最小面积布局中具有最大可能长宽比的布局。因此,这样的布局的优点在于,通过“折叠”布局,可以在较小的恒定因子内以增加的面积获得所有可能的纵横比的布局。我们展示了一个N顶点树,其布局宽度为k(即可以将树布局到其中的网格的最小宽度为k)可以布局为面积O(N)和宽度O( k)。对于二叉树布局,我们在面积和宽度之间进行了详细的权衡:可以将布局宽度为k的N顶点二叉树布置为区域O(k +α/ 1 +αN)和宽度k +α,其中α是0≤α≤N〜(1/2)的任意整数,并且对于k≥1和α≥0的任何区域,该区域在存在上都是最优的。 =Ω(k)对于将图形布局到最佳区域至关重要。这里提出的布局可以在多项式时间内构造。我们还表明,即使G限于二叉树,将给定图形G布置到给定的面积和宽度,或者等效地布置到给定的长度和宽度的问题也是NP-hard问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号