【24h】

Design of FIR Digital Filters Using Hopfield Neural Network

机译:基于Hopfield神经网络的FIR数字滤波器设计。

获取原文
获取原文并翻译 | 示例

摘要

This paper is intended to provide an alternative approach for the design of FIR filters by using a Hopfield Neural Network (HNN). The proposed approach establishes the error function between the amplitude response of the desired FIR filter and the designed one as a Lyapunov energy function to find the HNN parameters. Using the framework of HNN, the optimal filter coefficients can be obtained from the output state of the network. With the advantages of local connectivity, regularity and modularity, the architecture of the proposed approach can be applied to the design of differentiators and Hilbert transformer with significantly reduction of computational complexity and hardware cost. As the simulation results illustrate, the proposed neural-based method is capable of achieving an excellent performance for filter design.
机译:本文旨在通过使用Hopfield神经网络(HNN)为FIR滤波器的设计提供一种替代方法。所提出的方法在期望的FIR滤波器的幅度响应和设计为Lyapunov能量函数的函数之间建立误差函数,以找到HNN参数。使用HNN的框架,可以从网络的输出状态获得最佳滤波器系数。凭借本地连接,规则性和模块化的优势,该方法的体系结构可应用于微分器和希尔伯特变换器的设计,从而显着降低了计算复杂性和硬件成本。仿真结果表明,所提出的基于神经网络的方法能够实现优异的滤波器设计性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号