首页> 外文期刊>IEICE Transactions on fundamentals of electronics, communications & computer sciences >Variation-Aware Task and Communication Scheduling in MPSoCs for Power-Yield Maximization
【24h】

Variation-Aware Task and Communication Scheduling in MPSoCs for Power-Yield Maximization

机译:MPSoC中的变体感知任务和通信调度,可实现功率最大化

获取原文
获取原文并翻译 | 示例

摘要

Parameter variations reveal themselves as different frequency and leakage powers per instances of the same MPSoC. By the increasing variation with technology scaling, worst-case-based scheduling algorithms result in either increasingly less optimal schedules or otherwise more lost yield. To address this problem, this paper introduces a variation-aware task and communication scheduling algorithm for multiprocessor system-on-chip (MPSoC). We consider both delay and leakage power variations during the process of finding the best schedule so that leakier processors are less utilized and can be more frequently put in sleep mode to reduce power. Our algorithm takes advantage of event tables to accelerate the statistical timing and power analysis. We use genetic algorithm to find the best schedule that maximizes power-yield under a performance-yield constraint. Experimental results on real world benchmarks show that our proposed algorithm achieves 16.6% power-yield improvement on average over deterministic worst-case-based scheduling.
机译:参数变化表明,同一MPSoC的每个实例的频率和泄漏功率不同。随着技术规模变化的增加,基于最坏情况的调度算法将导致越来越少的最佳调度,或者导致更多的产量损失。为了解决这个问题,本文介绍了一种多处理器片上系统(MPSoC)的变体感知任务和通信调度算法。在寻找最佳时间表的过程中,我们会同时考虑延迟和泄漏功率的变化,以使泄漏处理器的利用率降低,并且可以更频繁地进入睡眠模式以降低功耗。我们的算法利用事件表来加速统计时序和功率分析。我们使用遗传算法找到在性能-收益约束下最大化功率-收益的最佳调度。在现实世界基准上的实验结果表明,与基于确定性最坏情况的调度相比,我们提出的算法平均可将功率收益提高16.6%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号