首页> 外文期刊>Microprocessors and microsystems >Static statistical MPSoC power optimization by variation-aware task and communication scheduling
【24h】

Static statistical MPSoC power optimization by variation-aware task and communication scheduling

机译:通过感知变化的任务和通信调度来静态统计MPSoC功耗优化

获取原文
获取原文并翻译 | 示例

摘要

Corner-case analysis is a well-known technique to cope with occasional deviations occurring during the manufacturing process of semiconductors. However, the increasing amount of process variation in nanometer technologies has made it inevitable to move toward statistical analysis methods, instead of deterministic worst-case-based techniques, at all design levels. We show that by statically considering statistical effects of random and systematic process variation on performance and power consumption of a Multiprocessor System-on-Chip (MPSoC), significant power improvement can be achieved by static software-level optimizations such as task and communication scheduling. Moreover, we analyze and show how the changes in the amount of process variability as well as values of other system constraints affect the achieved power improvement in such system-level optimizations. We employ a mixed-level model of MPSoC critical components so as to obtain the statistical distribution of frequency and power consumption of MPSoCs in presence of both within-die and die-to-die process variations. Using this model, we show that our proposed statistical task scheduling algorithm can achieve substantial power reduction under different values of system constraints. Furthermore, the effectiveness of our proposed statistical task scheduling approach will even increase with the increasing amount of process variation expected to occur in future technologies.
机译:极端情况分析是一种众所周知的技术,可以应对半导体制造过程中偶尔出现的偏差。但是,随着纳米技术中工艺变化量的不断增加,在所有设计级别上都不可避免地会转向统计分析方法,而不是基于确定性最坏情况的技术。我们表明,通过静态地考虑随机和系统过程变化对多处理器片上系统(MPSoC)的性能和功耗的统计影响,可以通过静态软件级优化(例如任务和通信调度)来实现显着的功耗改善。此外,我们分析并显示了过程可变性量的变化以及其他系统约束的值如何影响此类系统级优化中实现的功率改进。我们采用了MPSoC关键组件的混合级别模型,以便在管芯内部和管芯之间存在工艺差异的情况下获得MPSoC的频率和功耗的统计分布。使用该模型,我们证明了我们提出的统计任务调度算法可以在不同的系统约束值下实现显着的功耗降低。此外,我们提出的统计任务调度方法的有效性甚至会随着未来技术中预期发生的过程变化量的增加而提高。

著录项

  • 来源
    《Microprocessors and microsystems》 |2013年第8ptab期|953-963|共11页
  • 作者单位

    Department of Electrical Engineering, Sharif University of Technology, Tehran 11365-9363, Iran,Department of Computer Engineering, Sharif University of Technology, Tehran 11155-9517, Iran;

    Department of Computer Engineering, Sharif University of Technology, Tehran 11155-9517, Iran,School of Computer Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran;

    Department of Electrical Engineering, Sharif University of Technology, Tehran 11365-9363, Iran;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    MPSoC; Sensitivity analysis; Task scheduling; Process variation;

    机译:MPSoC;敏感性分析;任务调度;工艺变化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号