机译:基于顺序迭代约简西格玛点卡尔曼滤波器的改进GPS / RFID集成方法
School of Electronic Science and Engineering, National University of Defense Technology, China;
School of Instrumentation Science and Opto-electronics Engineering, Beihang University, China;
School of Mathematics and Geospatial Sciences, RMIT University, Australia;
School of Electronic Science and Engineering, National University of Defense Technology, China;
School of Mathematics and Geospatial Sciences, RMIT University, Australia;
sequential iterated reduced sigma point kalman filter; GPS/RFID integration; vehicle navigation; RFID technology;
机译:用于紧密耦合Gps / ins积分的Sigma-point Kalman滤波
机译:一种新的安全保障方法,基于化合物等效建模和迭代减少无人机锂离子电池的粒子适应性Kalman滤波
机译:使用两个基于卡尔曼滤波器的级联阶段改进GPS / IMU松散耦合集成方案
机译:基于迭代约简西格玛点卡尔曼滤波的车辆导航新GPS / RFID集成算法
机译:神经网络增强了紧密耦合的卡尔曼滤波器,可降低低成本的惯性导航传感器和GPS的集成。
机译:基于迭代最近点和迭代Sigma点Kalman滤波器的LiDAR-IMU时延校准
机译:一种新的安全保障方法,基于化合物等效建模和迭代减少无人机锂离子电池的粒子适应性Kalman滤波