首页> 外文期刊>IEEE transactions on visualization and computer graphics >Fast collision detection among multiple moving spheres
【24h】

Fast collision detection among multiple moving spheres

机译:快速检测多个运动球之间的碰撞

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an event-driven approach that efficiently detects collisions among multiple ballistic spheres moving in the 3D space. Adopting a hierarchical uniform space subdivision scheme, we are able to trace the trajectories of spheres and their time-varying spatial distribution. We identify three types of events to detect the sequence of all collisions during our simulation: collision, entering, and leaving. The first type of event is due to actual collisions, and the other two types occur when spheres move from subspace to subspace in the space. Tracing all such events in the order of their occurring times, we are able to avoid fixed time step simulation. When the size of the largest sphere is bounded by a constant multiple of that of the smallest, it takes O(n~/sub c/ log n+n~/sub e/ log n) time with O(n) space after O(n log n) time preprocessing to simulate n moving spheres, where n~/sub c/ and n~/sub e/ are the number of actual collisions and that of entering and leaving events during the simulation, respectively. Since n~/sub e/, depends on the size of subspaces, we modify the collision model from kinetic theory for molecular gas to determine the subspace sizes for the space subdivision scheme, that minimize simulation time. Experimental results show that collision detection can be done in linear time in n over a large range.
机译:本文提出了一种事件驱动的方法,可以有效地检测在3D空间中移动的多个弹道球之间的碰撞。采用分层的均匀空间细分方案,我们能够跟踪球体的轨迹及其随时间变化的空间分布。我们确定三种类型的事件以检测模拟过程中所有碰撞的顺序:碰撞,进入和离开。第一种类型的事件是由于实际的碰撞引起的,而其他两种类型的事件是在球体从子空间移动到空间中的子空间时发生的。跟踪所有此类事件的发生时间顺序,我们可以避免固定时间步长仿真。当最大球体的大小由最小球体的常数倍为边界时,它花费O(n〜/ sub c / log n + n〜/ sub e / log n)时间,在O之后有O(n)空间(n log n)时间预处理以模拟n个运动球体,其中n〜/ sub c /和n〜/ sub e /分别是模拟中实际碰撞的次数以及进入和离开事件的次数。由于n〜/ sub e /取决于子空间的大小,因此我们根据分子气体动力学理论修改了碰撞模型,以确定空间细分方案的子空间大小,从而最大程度地缩短了仿真时间。实验结果表明,可以在n范围内的线性时间内完成碰撞检测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号