首页> 外文期刊>IEEE transactions on visualization and computer graphics >Design and Analysis of Optimization Methods for Subdivision Surface Fitting
【24h】

Design and Analysis of Optimization Methods for Subdivision Surface Fitting

机译:细分曲面拟合优化方法的设计与分析

获取原文
获取原文并翻译 | 示例

摘要

We present a complete framework for computing a subdivision surface to approximate unorganized point sample data, which is a separable nonlinear least squares problem. We study the convergence and stability of three geometrically-motivated optimization schemes and reveal their intrinsic relations with standard methods for constrained nonlinear optimization. A commonly-used method in graphics, called point distance minimization, is shown to use a variant of the gradient descent step and thus has only linear convergence. The second method, called tangent distance minimization, which is well-known in computer vision, is shown to use the Gauss-Newton step, and thus demonstrates near quadratic convergence for zero residual problems but may not converge otherwise. Finally, we show that an optimization scheme called squared distance minimization, recently proposed by Pottmann et al., can be derived from the Newton method. Hence, with proper regularization, tangent distance minimization and squared distance minimization are more efficient than point distance minimization. We also investigate the effects of two step size control methods -- Levenberg-Marquardt regularization and the Armijo rule -- on the convergence stability and efficiency of the above optimization schemes.
机译:我们提供了一个完整的框架,用于计算细分曲面以近似无组织的点样本数据,这是一个可分离的非线性最小二乘问题。我们研究了三种基于几何的优化方案的收敛性和稳定性,并揭示了它们与约束非线性优化的标准方法的内在联系。在图形中最常用的方法称为点距离最小化,显示为使用梯度下降步骤的变体,因此仅具有线性收敛。第二种方法,称为切线距离最小化,在计算机视觉中是众所周知的,已显示使用高斯-牛顿步骤,因此对于零残留问题展示了接近二次收敛性,但否则可能不会收敛。最后,我们表明,Pottmann等人最近提出的一种称为平方距离最小化的优化方案可以从牛顿法得到。因此,通过适当的正则化,切线距离最小化和平方距离最小化比点距离最小化更有效。我们还研究了两种步长控制方法-Levenberg-Marquardt正则化和Armijo规则-对上述优化方案的收敛稳定性和效率的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号