首页> 外文期刊>Visualization and Computer Graphics, IEEE Transactions on >Interactive Multiscale Tensor Reconstruction for Multiresolution Volume Visualization
【24h】

Interactive Multiscale Tensor Reconstruction for Multiresolution Volume Visualization

机译:用于多分辨率体积可视化的交互式多尺度张量重构

获取原文
获取原文并翻译 | 示例

摘要

Large scale and structurally complex volume datasets from high-resolution 3D imaging devices or computational simulations pose a number of technical challenges for interactive visual analysis. In this paper, we present the first integration of a multiscale volume representation based on tensor approximation within a GPU-accelerated out-of-core multiresolution rendering framework. Specific contributions include (a) a hierarchical brick-tensor decomposition approach for pre-processing large volume data, (b) a GPU accelerated tensor reconstruction implementation exploiting CUDA capabilities, and (c) an effective tensor-specific quantization strategy for reducing data transfer bandwidth and out-of-core memory footprint. Our multiscale representation allows for the extraction, analysis and display of structural features at variable spatial scales, while adaptive level-of-detail rendering methods make it possible to interactively explore large datasets within a constrained memory footprint. The quality and performance of our prototype system is evaluated on large structurally complex datasets, including gigabyte-sized micro-tomographic volumes.
机译:来自高分辨率3D成像设备或计算模拟的大规模且结构复杂的体积数据集对交互式视觉分析提出了许多技术挑战。在本文中,我们介绍了在GPU加速的核外多分辨率渲染框架中基于张量逼近的多尺度体积表示形式的首次集成。具体贡献包括(a)用于预处理大量数据的分层砖张量分解方法;(b)利用CUDA功能的GPU加速张量重构实现;以及(c)有效的特定于张量的量化策略,用于减少数据传输带宽和核心外的内存占用。我们的多尺度表示允许在可变的空间尺度上提取,分析和显示结构特征,而自适应的细节层次渲染方法则可以在有限的内存占用空间内交互式地探索大型数据集。我们的原型系统的质量和性能是在大型结构复杂的数据集上进行评估的,其中包括千兆字节大小的微观断层摄影量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号