首页> 外文期刊>IEEE transactions on visualization and computer graphics >BASTet: Shareable and Reproducible Analysis and Visualization of Mass Spectrometry Imaging Data via OpenMSI
【24h】

BASTet: Shareable and Reproducible Analysis and Visualization of Mass Spectrometry Imaging Data via OpenMSI

机译:BASTet:通过OpenMSI对质谱成像数据进行共享和可再现的分析和可视化

获取原文
获取原文并翻译 | 示例

摘要

Mass spectrometry imaging (MSI) is a transformative imaging method that supports the untargeted, quantitative measurement of the chemical composition and spatial heterogeneity of complex samples with broad applications in life sciences, bioenergy, and health. While MSI data can be routinely collected, its broad application is currently limited by the lack of easily accessible analysis methods that can process data of the size, volume, diversity, and complexity generated by MSI experiments. The development and application of cutting-edge analytical methods is a core driver in MSI research for new scientific discoveries, medical diagnostics, and commercial-innovation. However, the lack of means to share, apply, and reproduce analyses hinders the broad application, validation, and use of novel MSI analysis methods. To address this central challenge, we introduce the Berkeley Analysis and Storage Toolkit (BASTet), a novel framework for shareable and reproducible data analysis that supports standardized data and analysis interfaces, integrated data storage, data provenance, workflow management, and a broad set of integrated tools. Based on BASTet, we describe the extension of the OpenMSI mass spectrometry imaging science gateway to enable web-based sharing, reuse, analysis, and visualization of data analyses and derived data products. We demonstrate the application of BASTet and OpenMSI in practice to identify and compare characteristic substructures in the mouse brain based on their chemical composition measured via MSI.
机译:质谱成像(MSI)是一种变换成像方法,支持对复杂样品的化学成分和空间异质性进行无目标的定量测量,在生命科学,生物能源和健康领域具有广泛的应用。虽然可以定期收集MSI数据,但是由于缺乏可访问的,可以处理MSI实验生成的大小,数量,多样性和复杂性数据的分析方法,其广泛应用目前受到限制。尖端分析方法的开发和应用是MSI研究新科学发现,医学诊断和商业创新的核心动力。但是,缺乏共享,应用和复制分析的方法阻碍了新颖的MSI分析方法的广泛应用,验证和使用。为了解决这一核心挑战,我们推出了Berkeley分析和存储工具包(BASTet),这是一种用于可共享和可重现的数据分析的新颖框架,该框架支持标准化数据和分析接口,集成数据存储,数据出处,工作流管理以及广泛的集成工具。基于BASTet,我们描述了OpenMSI质谱成像科学网关的扩展,以实现基于Web的数据分析和派生数据产品的共享,重用,分析和可视化。我们展示了BASTet和OpenMSI在实践中的应用,基于通过MSI测量的化学成分,可以识别和比较小鼠脑中的特征性亚结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号