首页> 外文期刊>IEEE transactions on visualization and computer graphics >Bridging from Goals to Tasks with Design Study Analysis Reports
【24h】

Bridging from Goals to Tasks with Design Study Analysis Reports

机译:使用设计研究分析报告将目标桥接到任务

获取原文
获取原文并翻译 | 示例

摘要

Visualization researchers and practitioners engaged in generating or evaluating designs are faced with the difficult problem of transforming the questions asked and actions taken by target users from domain-specific language and context into more abstract forms. Existing abstract task classifications aim to provide support for this endeavour by providing a carefully delineated suite of actions. Our experience is that this bottom-up approach is part of the challenge: low-level actions are difficult to interpret without a higher-level context of analysis goals and the analysis process. To bridge this gap, we propose a framework based on analysis reports derived from open-coding 20 design study papers published at IEEE InfoVis 2009-2015, to build on the previous work of abstractions that collectively encompass a broad variety of domains. The framework is organized in two axes illustrated by nine analysis goals. It helps situate the analysis goals by placing each goal under axes of specificity (Explore, Describe, Explain, Confirm) and number of data populations (Single, Multiple). The single-population types are Discover Observation, Describe Observation, Identify Main Cause, and Collect Evidence. The multiple-population types are Compare Entities, Explain Differences, and Evaluate Hypothesis. Each analysis goal is scoped by an input and an output and is characterized by analysis steps reported in the design study papers. We provide examples of how we and others have used the framework in a top-down approach to abstracting domain problems: visualization designers or researchers first identify the analysis goals of each unit of analysis in an analysis stream, and then encode the individual steps using existing task classifications with the context of the goal, the level of specificity, and the number of populations involved in the analysis.
机译:从事生成或评估设计的可视化研究人员和从业人员面临着一个棘手的问题,即将目标用户提出的问题和采取的行动从特定领域的语言和上下文转换为更抽象的形式。现有的抽象任务分类旨在通过提供精心描述的一组动作来为此工作提供支持。我们的经验是,这种自下而上的方法是挑战的一部分:如果没有更高层次的分析目标和分析过程,则很难解释低层次的行为。为了弥合这种差距,我们基于在开放式编码中得出的分析报告提出了一个框架,该研究报告发表在IEEE InfoVis 2009-2015上,共发表了20篇设计研究论文,以先前的抽象工作为基础,这些工作共同涵盖了广泛的领域。该框架分为两个轴,由九个分析目标阐明。它通过将每个目标置于专一性(浏览,描述,解释,确认)和数据填充数量(单个,多个)的轴下来帮助确定分析目标的位置。单人口类型是“发现观察”,“描述观察”,“确定主要原因”和“收集证据”。多个人口类型是“比较实体”,“解释差异”和“评估假设”。每个分析目标都由输入和输出决定,并由设计研究文件中报告的分析步骤来表征。我们提供了一些示例,说明了我们和其他人如何以自顶向下的方式使用该框架来抽象领域问题:可视化设计人员或研究人员首先确定分析流中每个分析单元的分析目标,然后使用现有的方法对各个步骤进行编码任务分类以及目标,特定程度和分析涉及的人群数量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号