首页> 外文期刊>IEEE transactions on visualization and computer graphics >Towards Automated Infographic Design: Deep Learning-based Auto-Extraction of Extensible Timeline
【24h】

Towards Automated Infographic Design: Deep Learning-based Auto-Extraction of Extensible Timeline

机译:迈向自动化信息图表设计:基于深度学习的可扩展时间线自动提取

获取原文
获取原文并翻译 | 示例

摘要

Designers need to consider not only perceptual effectiveness but also visual styles when creating an infographic. This process can be difficult and time consuming for professional designers, not to mention non-expert users, leading to the demand for automated infographics design. As a first step, we focus on timeline infographics, which have been widely used for centuries. We contribute an end-to-end approach that automatically extracts an extensible timeline template from a bitmap image. Our approach adopts a deconstruction and reconstruction paradigm. At the deconstruction stage, we propose a multi-task deep neural network that simultaneously parses two kinds of information from a bitmap timeline: 1) the global information, i.e., the representation, scale, layout, and orientation of the timeline, and 2) the local information, i.e., the location, category, and pixels of each visual element on the timeline. At the reconstruction stage, we propose a pipeline with three techniques, i.e., Non-Maximum Merging, Redundancy Recover, and DL GrabCut, to extract an extensible template from the infographic, by utilizing the deconstruction results. To evaluate the effectiveness of our approach, we synthesize a timeline dataset (4296 images) and collect a real-world timeline dataset (393 images) from the Internet. We first report quantitative evaluation results of our approach over the two datasets. Then, we present examples of automatically extracted templates and timelines automatically generated based on these templates to qualitatively demonstrate the performance. The results confirm that our approach can effectively extract extensible templates from real-world timeline infographics.
机译:设计师在创建信息图表时不仅需要考虑感知效率,还需要考虑视觉风格。对于专业设计师而言,此过程可能既困难又耗时,更不用说非专家用户了,从而导致了对自动化信息图表设计的需求。第一步,我们专注于时间线图表,该图表已被广泛使用了多个世纪。我们提供了一种端到端方法,该方法可自动从位图图像中提取可扩展的时间线模板。我们的方法采用解构和重构范式。在解构阶段,我们提出了一个多任务深度神经网络,该网络同时解析位图时间线中的两种信息:1)全局信息,即时间线的表示,比例,布局和方向,以及2)本地信息,即时间轴上每个视觉元素的位置,类别和像素。在重建阶段,我们提出了一种管道,该管道具有三种技术(即非最大合并,冗余恢复和DL GrabCut),可以利用解构结果从信息图中提取可扩展模板。为了评估我们方法的有效性,我们合成了一个时间轴数据集(4296张图像),并从Internet收集了一个现实世界的时间轴数据集(393张图像)。我们首先报告对两个数据集的方法的定量评估结果。然后,我们提供自动提取模板的示例以及根据这些模板自动生成的时间线,以定性地演示性能。结果证实,我们的方法可以有效地从现实世界的时间线图表中提取可扩展模板。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号