首页> 外文期刊>IEEE transactions on visualization and computer graphics >Classification of Blood Flow Patterns in Cerebral Aneurysms
【24h】

Classification of Blood Flow Patterns in Cerebral Aneurysms

机译:脑动脉瘤的血流模式分类

获取原文
获取原文并翻译 | 示例

摘要

We present a Cerebral Aneurysm Vortex Classification (CAVOCLA) that allows to classify blood flow in cerebral aneurysms. Medical studies assume a strong relation between the progression and rupture of aneurysms and flow patterns. To understand how flow patterns impact the vessel morphology, they are manually classified according to predefined classes. However, manual classifications are time-consuming and exhibit a high inter-observer variability. In contrast, our approach is more objective and faster than manual methods. The classification of integral lines, representing steady or unsteady blood flow, is based on a mapping of the aneurysm surface to a hemisphere by calculating polar-based coordinates. The lines are clustered and for each cluster a representative is calculated. Then, the polar-based coordinates are transformed to the representative as basis for the classification. Classes are based on the flow complexity. The classification results are presented by a detail-on-demand approach using a visual transition from the representative over an enclosing surface to the associated lines. Based on seven representative datasets, we conduct an informal interview with five domain experts to evaluate the system. They confirmed that CAVOCLA allows for a robust classification of intra-aneurysmal flow patterns. The detail-on-demand visualization enables an efficient exploration and interpretation of flow patterns.
机译:我们提出了脑动脉瘤分类法(CAVOCLA),可以对脑动脉瘤中的血流进行分类。医学研究假设动脉瘤的进展与破裂与血流模式之间存在密切关系。为了了解流动模式如何影响血管形态,可根据预定义的类别对它们进行手动分类。但是,手动分类非常耗时,并且观察者之间的差异很大。相反,我们的方法比手动方法更客观,更快捷。代表稳定或不稳定血液流动的整数线的分类基于动脉瘤表面到半球的映射,方法是计算基于极坐标的坐标。线被聚类,并且对于每个聚类,计算代表。然后,将基于极坐标的坐标转换为代表作为分类的基础。类基于流的复杂性。分类结果通过按需详细方法呈现,该方法使用从封闭面上的代表到相关线条的视觉过渡。基于七个代表性数据集,我们与五位领域专家进行了一次非正式采访,以评估系统。他们证实,CAVOCLA可以对动脉瘤内部的流型进行可靠的分类。按需细节可视化可以有效地浏览和解释流模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号