首页> 外文期刊>Computers & Graphics >Exploration of blood flow patterns in cerebral aneurysms during the cardiac cycle
【24h】

Exploration of blood flow patterns in cerebral aneurysms during the cardiac cycle

机译:心脏周期中脑动脉瘤血流模式的探索

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a method for clustering time-dependent blood flow data, represented by path lines, in cerebral aneurysms using a reliable similarity measure combined with a clustering technique. Such aneurysms bear the risk of rupture, whereas their treatment also carries considerable risks for the patient. Medical researchers emphasize the importance of investigating aberrant blood flow patterns for the patient-specific rupture risk assessment and treatment analysis. Therefore, occurring flow patterns are manually extracted and classified according to predefined criteria. The manual extraction is time-consuming for larger studies and affected by visual clutter, which complicates the subsequent classification of flow patterns. In contrast, our method allows an automatic and reliable clustering of intra-aneurysmal flow patterns that facilitates their classification. We introduce a similarity measure that groups spatio-temporally adjacent flow patterns. We combine our similarity measure with a commonly used clustering technique and applied it to five representative datasets. The clustering results are presented by 2D and 3D visualizations and were qualitatively compared and evaluated by four domain experts. Moreover, we qualitatively evaluated our similarity measure. (C) 2018 Elsevier Ltd. All rights reserved.
机译:本文提出了一种使用可靠的相似性度量结合聚类技术对脑动脉瘤中以时间线表示的时间相关的血流数据进行聚类的方法。这样的动脉瘤具有破裂的风险,而其治疗对患者也具有相当大的风险。医学研究人员强调研究异常血流模式对于特定于患者的破裂风险评估和治疗分析的重要性。因此,根据预定标准手动提取发生的流型并对其进行分类。对于较大的研究,手动提取非常耗时,并且会受到视觉混乱的影响,这会使后续的流型分类变得复杂。相比之下,我们的方法允许对动脉瘤内部流动模式进行自动可靠的聚类,从而有助于对其进行分类。我们介绍了一种将时空相邻流模式分组的相似性度量。我们将相似性度量与常用的聚类技术结合起来,并将其应用于五个代表性数据集。聚类结果由2D和3D可视化呈现,并由四位领域专家进行定性比较和评估。此外,我们定性评估了我们的相似性度量。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号