首页> 外文期刊>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control >Efficient Broadband Simulation of Fluid-Structure Coupling for Membrane-Type Acoustic Transducer Arrays Using the Multilevel Fast Multipole Algorithm
【24h】

Efficient Broadband Simulation of Fluid-Structure Coupling for Membrane-Type Acoustic Transducer Arrays Using the Multilevel Fast Multipole Algorithm

机译:使用多级快速多极算法的膜型声换能器阵列流固耦合高效宽带仿真

获取原文
获取原文并翻译 | 示例

摘要

A boundary element model provides great flexibility for the simulation of membrane-type micromachined ultrasonic transducers (MUTs) in terms of membrane shape, actuating mechanism, and array layout. Acoustic crosstalk is accounted for through a mutual impedance matrix that captures the primary crosstalk mechanism of dispersive-guided modes generated at the fluid-solid interface. However, finding the solution to the fully populated boundary element matrix equation using standard techniques requires computation time and memory usage that scales by the cube and by the square of the number of nodes, respectively, limiting simulation to a small number of membranes. We implement a solver with improved speed and efficiency through the application of a multilevel fast multipole algorithm (FMA). By approximating the fields of collections of nodes using multipole expansions of the free-space Green's function, an FMA solver can enable the simulation of hundreds of thousands of nodes while incurring an approximation error that is controllable. Convergence is drastically improved using a problem-specific block-diagonal preconditioner. We demonstrate the solver's capabilities by simulating a 32-element 7-MHz 1-D capacitive MUT (CMUT) phased array with 2880 membranes. The array is simulated using 233280 nodes for a very wide frequency band up to 50 MHz. For a simulation with 15210 nodes, the FMA solver performed ten times faster and used 32 times less memory than a standard solver based on LU decomposition. We investigate the effects of mesh density and phasing on the predicted array response and find that it is necessary to use about seven nodes over the width of the membrane to observe convergence of the solution-even below the first membrane resonance frequency-due to the influence of higher order membrane modes.
机译:边界元模型为膜型微机械超声换能器(MUT)的膜形状,致动机制和阵列布局提供了极大的灵活性。声串扰通过互阻抗矩阵解决,该矩阵捕获了在流固界面处产生的色散引导模式的主要串扰机制。但是,使用标准技术找到完全填充的边界元矩阵方程的解需要计算时间和内存使用量,它们分别按立方体和节点数的平方缩放,从而将模拟限制在少量的膜上。我们通过应用多级快速多极算法(FMA)来实现具有提高的速度和效率的求解器。通过使用自由空间格林函数的多极展开来逼近节点集合的场,FMA解算器可以模拟成千上万个节点,同时产生可控制的逼近误差。使用特定于问题的块对角线预处理器可以大大提高收敛性。我们通过模拟具有2880个膜的32元素7 MHz一维电容性MUT(CMUT)相控阵列,证明了求解器的功能。使用233280个节点对高达50 MHz的非常宽的频带进行了仿真。对于具有15210个节点的仿真,与基于LU分解的标准求解器相比,FMA求解器的执行速度快十倍,并且使用的内存减少了32倍。我们研究了网格密度和相位对预测的阵列响应的影响,发现由于该影响,有必要在膜的整个宽度上使用大约七个节点来观察溶液的收敛性,甚至低于第一个膜共振频率。高阶膜模式

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号