首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics >Scheduling multiprocessor job with resource and timing constraintsusing neural networks
【24h】

Scheduling multiprocessor job with resource and timing constraintsusing neural networks

机译:使用神经网络对具有资源和时间约束的多处理器作业进行调度

获取原文
获取原文并翻译 | 示例

摘要

The Hopfield neural network is extensively applied to obtaining annoptimal/feasible solution in many different applications such as thentraveling salesman problem (TSP), a typical discrete combinatorialnproblem. Although providing rapid convergence to the solution, TSPnfrequently converges to a local minimum. Stochastic simulated annealingnis a highly effective means of obtaining an optimal solution capable ofnpreventing the local minimum. This important feature is embedded into anHopfield neural network to derive a new technique, i.e., mean fieldnannealing. This work applies the Hopfield neural network and thennormalized mean field annealing technique, respectively, to resolve anmultiprocessor problem (known to be a NP-hard problem) with no processnmigration, constrained times (execution time and deadline) and limitednresources. Simulation results demonstrate that the derived energynfunction works effectively for this class of problems
机译:Hopfield神经网络已广泛应用于在许多不同的应用中获得不理想/可行的解决方案,例如旅行商问题(TSP),这是典型的离散组合问题。尽管可以快速收敛到解决方案,但TSPn经常收敛到局部最小值。随机模拟退火是获得能够防止局部最小值的最佳解决方案的一种高效手段。这一重要特征被嵌入到Hopfield神经网络中,以推导一种新技术,即平均场退火。这项工作分别应用了Hopfield神经网络和规范化的平均场退火技术来解决多处理器问题(称为NP硬问题),并且没有进程迁移,时间(执行时间和截止时间)受限制且资源有限。仿真结果表明,导出的能量函数可以有效地解决此类问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号