首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B >Scheduling multiprocessor job with resource and timing constraints using neural networks
【24h】

Scheduling multiprocessor job with resource and timing constraints using neural networks

机译:使用神经网络对具有资源和时间约束的多处理器作业进行调度

获取原文
获取原文并翻译 | 示例

摘要

The Hopfield neural network is extensively applied to obtaining an optimal/feasible solution in many different applications such as the traveling salesman problem (TSP), a typical discrete combinatorial problem. Although providing rapid convergence to the solution, TSP frequently converges to a local minimum. Stochastic simulated annealing is a highly effective means of obtaining an optimal solution capable of preventing the local minimum. This important feature is embedded into a Hopfield neural network to derive a new technique, i.e., mean field annealing. This work applies the Hopfield neural network and the normalized mean field annealing technique, respectively, to resolve a multiprocessor problem (known to be a NP-hard problem) with no process migration, constrained times (execution time and deadline) and limited resources. Simulation results demonstrate that the derived energy function works effectively for this class of problems.
机译:Hopfield神经网络已广泛应用于在许多不同的应用程序中获得最佳/可行的解决方案,例如旅行商问题(TSP),典型的离散组合问题。尽管可以快速收敛到解决方案,但TSP经常收敛到局部最小值。随机模拟退火是获得能够防止局部最小值的最佳解决方案的高效方法。这一重要特征被嵌入到Hopfield神经网络中,以推导一种新技术,即平均场退火。这项工作分别应用Hopfield神经网络和归一化平均场退火技术来解决多处理器问题(称为NP硬问题),而没有进程迁移,时间(执行时间和截止日期)受限且资源有限。仿真结果表明,导出的能量函数可以有效地解决此类问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号