首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics >A recurrent neural network for minimum infinity-norm kinematiccontrol of redundant manipulators with an improved problem formulationand reduced architecture complexity
【24h】

A recurrent neural network for minimum infinity-norm kinematiccontrol of redundant manipulators with an improved problem formulationand reduced architecture complexity

机译:一种用于冗余机械手最小无穷范数运动学控制的递归神经网络,具有改进的问题表述和降低的体系结构复杂性

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an improved neural computation where schemenfor kinematic control of redundant manipulators based on infinity-normnjoint velocity minimization. Compared with a previous neural networknapproach to minimum infinity-non kinematic control, the present approachnis less complex in terms of cost of architecture. The recurrent neuralnnetwork explicitly minimizes the maximum component of the joint velocitynvector while tracking a desired end-effector trajectory. Thenend-effector velocity vector for a given task is fed into the neuralnnetwork from its input and the minimum infinity-norm joint velocitynvector is generated at its output instantaneously. Analytical resultsnare given to substantiate the asymptotic stability of the recurrentnneural network. The simulation results of a four-degree-of-freedomnplanar robot arm and a seven-degree-of-freedom industrial robot arenpresented to show the proposed neural network can effectively computenthe minimum infinity-norm solution to redundant manipulators
机译:本文提出了一种改进的神经计算方法,其中基于无穷规范关节速度最小化的冗余机械手运动控制方案。与先前的采用最小无穷非运动学控制的神经网络方法相比,本发明的方法在架构成本方面没有那么复杂。循环神经网络在跟踪所需的末端执行器轨迹时,显着最小化了关节速度矢量的最大分量。然后将给定任务的末端执行器速度矢量从其输入输入到神经元网络,并在其输出处立即生成最小无穷-范数联合速度矢量。给出分析结果以证实递归神经网络的渐近稳定性。给出了四自由度平面机器人手臂和七自由度工业机器人的仿真结果,表明所提出的神经网络可以有效地计算冗余机械手的最小无穷范数解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号