首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics >Prediction and identification using wavelet-based recurrent fuzzy neural networks
【24h】

Prediction and identification using wavelet-based recurrent fuzzy neural networks

机译:基于小波的递归模糊神经网络的预测与识别

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a wavelet-based recurrent fuzzy neural network (WRFNN) for prediction and identification of nonlinear dynamic systems. The proposed WRFNN model combines the traditional Takagi-Sugeno-Kang (TSK) fuzzy model and the wavelet neural networks (WNN). This paper adopts the nonorthogonal and compactly supported functions as wavelet neural network bases. Temporal relations embedded in the network are caused by adding some feedback connections representing the memory units into the second layer of the feedforward wavelet-based fuzzy neural networks (WFNN). An online learning algorithm, which consists of structure learning and parameter learning, is also presented. The structure learning depends on the degree measure to obtain the number of fuzzy rules and wavelet functions. Meanwhile, the parameter learning is based on the gradient descent method for adjusting the shape of the membership function and the connection weights of WNN. Finally, computer simulations have demonstrated that the proposed WRFNN model requires fewer adjustable parameters and obtains a smaller RMS error than other methods.
机译:本文提出了一种基于小波的递归模糊神经网络(WRFNN),用于非线性动力学系统的预测和识别。提出的WRFNN模型结合了传统的Takagi-Sugeno-Kang(TSK)模糊模型和小波神经网络(WNN)。本文采用非正交且紧支持的函数作为小波神经网络基础。网络中嵌入的时间关系是通过将一些表示存储单元的反馈连接添加到前馈基于小波的模糊神经网络(WFNN)的第二层中引起的。提出了一种由结构学习和参数学习组成的在线学习算法。结构学习取决于程度度量,以获得模糊规则和小波函数的数量。同时,基于梯度下降法的参数学习用于调整隶属函数的形状和WNN的连接权重。最后,计算机仿真表明,所提出的WRFNN模型与其他方法相比,所需的可调参数更少,并且RMS误差更小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号