首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Identification and Prediction of Dynamic Systems Using an Interactively Recurrent Self-Evolving Fuzzy Neural Network
【24h】

Identification and Prediction of Dynamic Systems Using an Interactively Recurrent Self-Evolving Fuzzy Neural Network

机译:交互式递归自演化模糊神经网络的动态系统辨识与预测

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel recurrent fuzzy neural network, called an interactively recurrent self-evolving fuzzy neural network (IRSFNN), for prediction and identification of dynamic systems. The recurrent structure in an IRSFNN is formed as an external loops and internal feedback by feeding the rule firing strength of each rule to others rules and itself. The consequent part in the IRSFNN is composed of a Takagi–Sugeno–Kang (TSK) or functional-link-based type. The proposed IRSFNN employs a functional link neural network (FLNN) to the consequent part of fuzzy rules for promoting the mapping ability. Unlike a TSK-type fuzzy neural network, the FLNN in the consequent part is a nonlinear function of input variables. An IRSFNNs learning starts with an empty rule base and all of the rules are generated and learned online through a simultaneous structure and parameter learning. An on-line clustering algorithm is effective in generating fuzzy rules. The consequent update parameters are derived by a variable-dimensional Kalman filter algorithm. The premise and recurrent parameters are learned through a gradient descent algorithm. We test the IRSFNN for the prediction and identification of dynamic plants and compare it to other well-known recurrent FNNs. The proposed model obtains enhanced performance results.
机译:本文提出了一种新颖的递归模糊神经网络,称为交互式递归自演化模糊神经网络(IRSFNN),用于动态系统的预测和识别。 IRSFNN中的递归结构通过将每个规则的规则激发强度提供给其他规则及其自身而形成为外部循环和内部反馈。 IRSFNN的后续部分由Takagi–Sugeno–Kang(TSK)或基于功能链接的类型组成。提出的IRSFNN将功能链接神经网络(FLNN)应用于模糊规则的后续部分,以提高映射能力。与TSK型模糊神经网络不同,结果部分中的FLNN是输入变量的非线性函数。 IRSFNNs学习从一个空的规则库开始,并且通过同时进行的结构和参数学习在线生成和学习所有规则。在线聚类算法可有效地生成模糊规则。随之而来的更新参数是通过变维卡尔曼滤波算法得出的。通过梯度下降算法学习前提参数和循环参数。我们测试了IRSFNN以预测和识别动态植物,并将其与其他知名的递归FNNs进行比较。所提出的模型获得了增强的性能结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号