首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics >Image transform bootstrapping and its applications to semantic scene classification
【24h】

Image transform bootstrapping and its applications to semantic scene classification

机译:图像变换自举及其在语义场景分类中的应用

获取原文
获取原文并翻译 | 示例

摘要

The performance of an exemplar-based scene classification system depends largely on the size and quality of its set of training exemplars, which can be limited in practice. In addition, in nontrivial data sets, variations in scene content as well as distracting regions may exist in many testing images to prohibit good matches with the exemplars. Various boosting schemes have been proposed in machine learning, focusing on the feature space. We introduce the novel concept of image-transform bootstrapping using transforms in the image space to address such issues. In particular, three major schemes are described for exploiting this concept to augment training, testing, and both. We have successfully applied it to three applications of increasing difficulty: sunset detection, outdoor scene classification, and automatic image orientation detection. It is shown that appropriate transforms and meta-classification methods can be selected to boost performance according to the domain of the problem and the features/classifier used.
机译:基于示例的场景分类系统的性能很大程度上取决于其训练示例集的大小和质量,这在实践中可能会受到限制。另外,在非平凡的数据集中,场景内容的变化以及分散注意力的区域可能会出现在许多测试图像中,以阻止与示例的良好匹配。在机器学习中已经提出了各种增强方案,重点是特征空间。我们介绍了使用图像空间中的转换来解决此类问题的图像转换自举的新概念。特别是,描述了三种主要方案来利用这一概念来增强培训,测试和两者。我们已经成功地将其应用于难度越来越大的三种应用:日落检测,室外场景分类和自动图像方向检测。结果表明,可以根据问题的领域和所使用的特征/分类器,选择适当的变换和元分类方法来提高性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号