首页> 外文期刊>Big Data, IEEE Transactions on >Mining Deep Semantic Representations for Scene Classification of High-Resolution Remote Sensing Imagery
【24h】

Mining Deep Semantic Representations for Scene Classification of High-Resolution Remote Sensing Imagery

机译:高分辨率遥感图像场景分类的挖掘深度语义表示

获取原文
获取原文并翻译 | 示例

摘要

Scene classification is one of the most fundamental task in interpretation of high-resolution remote sensing (HRRS) images. Many recent works show that the probabilistic topic models which are capable of mining latent semantics of images can be effectively applied to HRRS scene classification. However, the existing approaches based on topic models simply utilize low-level hand-crafted features to form semantic features, which severely limit the representative capability of the semantic features derived from topic models. To alleviate this problem, this paper propose to build powerful semantic features using the probabilistic latent semantic analysis (pLSA) model, by employing the pre-trained deep convolutional neural networks (CNNs) as feature extractors rather than relying on the hand-crafted features. Specifically, we develop two methods to generate semantic features, called multi-scale deep semantic representation (MSDS) and multi-level deep semantic representation (MLDS), by extracting CNN features from different layers: (1) in MSDS, the final semantic features are learned by the pLSA with multi-scale features extracted from the convolutional layer of a pre-trained CNN; (2) in MLDS, we extract CNN features for densely sampled image patches at different size level from the fully-connected layer of a pre-trained CNN, and concatenate the sematic features learned by the pLSA at each level. We comprehensively evaluate the two methods on two public HRRS scene datasets, and achieve significant performance improvement over the state-of-the-art. The outstanding results demonstrate that the pLSA model is capable of discovering considerably discriminative semantic features from the deep CNN features.
机译:场景分类是解释高分辨率遥感(HRRS)图像中最基本的任务之一。许多最近的作品表明,能够利用图像潜在图像的概率主题模型可以有效地应用于HRRS场景分类。然而,基于主题模型的现有方法只是利用低级手工制作的功能来形成语义特征,这严重限制了来自主题模型的语义特征的代表性能力。为了缓解这个问题,本文建议使用概率潜在语义分析(PLSA)模型来建立强大的语义特征,通过使用预先训练的深卷积神经网络(CNNS)作为特征提取器,而不是依赖于手工制作的功能。具体而言,我们通过从不同层的CNN特征提取来自不同层的CNN特征,开发出一种生成语义特征,称为多尺度深度语义表示(MSDS)和多级深度语义表示(MLD)的方法:(1)最终语义特征通过PLSA学习,具有从预训练的CNN的卷积层提取的多尺度特征; (2)在MLD中,我们从预先训练的CNN的完全连接层的不同大小水平提取CNN特征,以便在每个级别连接PLSA学习的语义特征。我们全面评估了两种公共人力资源支持场景数据集的两种方法,实现了最先进的绩效改进。优异的结果表明,PLSA模型能够发现来自深度CNN特征的显着辨别性语义特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号