首页> 美国卫生研究院文献>Cognitive Neurodynamics >Predicting the eye fixation locations in the gray scale images in the visual scenes with different semantic contents
【2h】

Predicting the eye fixation locations in the gray scale images in the visual scenes with different semantic contents

机译:预测具有不同语义内容的视觉场景中灰度图像中的眼睛注视位置

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In recent years, there has been considerable interest in visual attention models (saliency map of visual attention). These models can be used to predict eye fixation locations, and thus will have many applications in various fields which leads to obtain better performance in machine vision systems. Most of these models need to be improved because they are based on bottom-up computation that does not consider top-down image semantic contents and often does not match actual eye fixation locations. In this study, we recorded the eye movements (i.e., fixations) of fourteen individuals who viewed images which consist natural (e.g., landscape, animal) and man-made (e.g., building, vehicles) scenes. We extracted the fixation locations of eye movements in two image categories. After extraction of the fixation areas (a patch around each fixation location), characteristics of these areas were evaluated as compared to non-fixation areas. The extracted features in each patch included the orientation and spatial frequency. After feature extraction phase, different statistical classifiers were trained for prediction of eye fixation locations by these features. This study connects eye-tracking results to automatic prediction of saliency regions of the images. The results showed that it is possible to predict the eye fixation locations by using of the image patches around subjects’ fixation points.
机译:近年来,人们对视觉注意力模型(视觉注意力显着图)产生了极大的兴趣。这些模型可用于预测眼睛注视位置,因此将在各个领域中具有许多应用,从而在机器视觉系统中获得更好的性能。这些模型中的大多数都需要改进,因为它们基于自下而上的计算,该计算不考虑自上而下的图像语义内容,并且通常不匹配实际的眼睛注视位置。在这项研究中,我们记录了十四个人的眼睛运动(即注视),这些人观看了包含自然(例如风景,动物)和人造(例如建筑物,车辆)场景的图像。我们在两个图像类别中提取了眼睛运动的注视位置。提取固定区域(每个固定位置周围的斑块)后,与非固定区域相比,评估了这些区域的特征。每个补丁中提取的特征包括方向和空间频率。在特征提取阶段之后,对不同的统计分类器进行了训练,以通过这些特征预测眼球的固定位置。这项研究将眼动追踪结果与图像显着区域的自动预测联系起来。结果表明,可以通过使用对象固定点周围的图像块来预测眼睛的固定位置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号