首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics >Visual Tracker Using Sequential Bayesian Learning: Discriminative, Generative, and Hybrid
【24h】

Visual Tracker Using Sequential Bayesian Learning: Discriminative, Generative, and Hybrid

机译:使用顺序贝叶斯学习的视觉跟踪器:判别,生成和混合

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel solution to track a visual object under changes in illumination, viewpoint, pose, scale, and occlusion. Under the framework of sequential Bayesian learning, we first develop a discriminative model-based tracker with a fast relevance vector machine algorithm, and then, a generative model-based tracker with a novel sequential Gaussian mixture model algorithm. Finally, we present a three-level hierarchy to investigate different schemes to combine the discriminative and generative models for tracking. The presented hierarchical model combination contains the learner combination (at level one), classifier combination (at level two), and decision combination (at level three). The experimental results with quantitative comparisons performed on many realistic video sequences show that the proposed adaptive combination of discriminative and generative models achieves the best overall performance. Qualitative comparison with some state-of-the-art methods demonstrates the effectiveness and efficiency of our method in handling various challenges during tracking.
机译:本文提出了一种在光照,视点,姿势,比例和遮挡变化下跟踪视觉对象的新颖解决方案。在顺序贝叶斯学习的框架下,我们首先使用快速相关向量机算法开发基于判别模型的跟踪器,然后再使用新型顺序高斯混合模型算法开发基于生成模型的跟踪器。最后,我们提出了一个三级层次结构来研究不同的方案,以结合判别模型和生成模型进行跟踪。提出的层次模型组合包含学习者组合(在第一级),分类器组合(在第二级)和决策组合(在第三级)。对许多现实视频序列进行定量比较的实验结果表明,所提出的判别模型和生成模型的自适应组合可实现最佳的整体性能。与一些最先进方法的定性比较证明了我们的方法在跟踪过程中应对各种挑战的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号