首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics >Reinforcement Learning in Continuous Time and Space: Interference and Not Ill Conditioning Is the Main Problem When Using Distributed Function Approximators
【24h】

Reinforcement Learning in Continuous Time and Space: Interference and Not Ill Conditioning Is the Main Problem When Using Distributed Function Approximators

机译:连续时间和空间中的强化学习:使用分布式函数逼近器时的主要问题是干扰和非病态调节

获取原文
获取原文并翻译 | 示例

摘要

Many interesting problems in reinforcement learning (RL) are continuous and/or high dimensional, and in this instance, RL techniques require the use of function approximators for learning value functions and policies. Often, local linear models have been
机译:强化学习(RL)中许多有趣的问题是连续的和/或高维的,在这种情况下,RL技术需要使用函数逼近器来学习价值函数和策略。通常,局部线性模型

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号