首页> 外文期刊>IEEE transactions on systems, man and cybernetics. Part C, Applications and reviews >Robust Neural-Network-Based Data Association and Multiple Model-Based Tracking of Multiple Point Targets
【24h】

Robust Neural-Network-Based Data Association and Multiple Model-Based Tracking of Multiple Point Targets

机译:基于鲁棒神经网络的数据关联和基于多模型的多点目标跟踪

获取原文
获取原文并翻译 | 示例

摘要

Data association and model selection are important factors for tracking multiple targets in a dense clutter environment without using a priori information about the target dynamic. We propose a neural-network-based tracking algorithm, incorporating a interacting multiple model and show that it is possible to track both maneuvering and nonmaneuvering targets simultaneously in the presence of dense clutter. Moreover, it can be used for real-time application. The proposed method overcomes the problem of data association by using the method of expectation maximization and Hopfield network to evaluate assignment weights. All validated observations are used to update the target state. In the proposed approach, a probability density function (pdf) of an observed data, given target state and observation association, is treated as a mixture pdf. This allows to combine the likelihood of an observation due to each model, and the association process is defined to incorporate an interacting multiple model, and consequently, it is possible to track any arbitrary trajectory
机译:数据关联和模型选择是在密集杂波环境中跟踪多个目标而无需使用有关目标动态的先验信息的重要因素。我们提出了一种基于神经网络的跟踪算法,该算法整合了一个相互作用的多个模型,并表明在存在密集杂波的情况下,可以同时跟踪机动目标和非机动目标。而且,它可以用于实时应用。通过期望最大化和Hopfield网络评估分配权重,该方法克服了数据关联的问题。所有经过验证的观察值均用于更新目标状态。在提出的方法中,将给定目标状态和观察关联的观察数据的概率密度函数(pdf)视为混合pdf。这允许组合由于每个模型而引起的观察的可能性,并且定义了关联过程以合并一个交互的多个模型,因此,可以跟踪任何任意轨迹

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号