首页> 外文期刊>Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on >Impedance Learning for Robotic Contact Tasks Using Natural Actor-Critic Algorithm
【24h】

Impedance Learning for Robotic Contact Tasks Using Natural Actor-Critic Algorithm

机译:使用自然Actor-Critic算法进行机器人接触任务的阻抗学习

获取原文
获取原文并翻译 | 示例

摘要

Compared with their robotic counterparts, humans excel at various tasks by using their ability to adaptively modulate arm impedance parameters. This ability allows us to successfully perform contact tasks even in uncertain environments. This paper considers a learning strategy of motor skill for robotic contact tasks based on a human motor control theory and machine learning schemes. Our robot learning method employs impedance control based on the equilibrium point control theory and reinforcement learning to determine the impedance parameters for contact tasks. A recursive least-square filter-based episodic natural actor-critic algorithm is used to find the optimal impedance parameters. The effectiveness of the proposed method was tested through dynamic simulations of various contact tasks. The simulation results demonstrated that the proposed method optimizes the performance of the contact tasks in uncertain conditions of the environment.
机译:与机器人相比,人类可以自适应地调节手臂阻抗参数,从而在各种任务上表现出色。这种能力使我们即使在不确定的环境中也能成功执行联系任务。本文考虑了基于人类运动控制理论和机器学习方案的机器人接触任务的运动技能学习策略。我们的机器人学习方法采用基于平衡点控制理论的阻抗控制和强化学习来确定接触任务的阻抗参数。基于递归最小二乘滤波器的情节自然演员评论算法可用于找到最佳阻抗参数。通过各种接触任务的动态仿真测试了该方法的有效性。仿真结果表明,所提出的方法在不确定的环境条件下优化了接触任务的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号