首页> 外文期刊>Engineering Applications of Artificial Intelligence >Passive dynamic walker controller design employing an RLS-based natural actor-critic learning algorithm
【24h】

Passive dynamic walker controller design employing an RLS-based natural actor-critic learning algorithm

机译:采用基于RLS的自然演员批判学习算法的被动动态步行者控制器设计

获取原文
获取原文并翻译 | 示例

摘要

A passive dynamic walker belongs to a class of bipedal walking robots that are able to walk stably down a small decline without using any actuators. The purpose of this research is to design a controller in order to build actuated robots capable of walking on a flat terrain based on passive dynamic walking. To achieve this objective, a control algorithm was used based on reinforcement learning (RL). The RL method is a goal-directed learning of a mapping from situations to actions without relying on exemplary supervision or complete models of the environment. The goal of the RL method is to maximize a reward, which is an evaluative feedback from the environment. In the process of constructing the reward of the actuated passive dynamic walker, the control objective, which is stable walking on level ground, is directly included. In this study, an RL algorithm based on the actor-critic architecture and the natural gradient method is applied. Also, the recursive least-squares (RLS) method was employed for the learning process in order to improve the efficiency of the method. The control algorithm was verified with computer simulations based on the eigenvalue analysis for stable locomotion.
机译:被动式动态助行器属于一类双足步行机器人,无需使用任何致动器就能够稳定地小幅度下降。这项研究的目的是设计一种控制器,以构建能够基于被动动态行走在平坦地形上行走的致动机器人。为了实现该目标,使用了基于强化学习(RL)的控制算法。 RL方法是从目标到行为的映射的目标导向学习,而无需依赖示范性的监督或完整的环境模型。 RL方法的目标是使奖励最大化,这是来自环境的评估反馈。在构造被激励的被动式动态助行器的过程中,直接包括在水平地面上稳定行走的控制目标。在这项研究中,应用了基于行为者批判架构和自然梯度法的RL算法。此外,递归最小二乘(RLS)方法用于学习过程,以提高该方法的效率。通过基于特征值分析的计算机仿真对控制算法进行了验证,以实现稳定的运动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号