首页> 外文期刊>Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on >Clustered Mixture Particle Filter for Underwater Multitarget Tracking in Multistatic Active Sonobuoy Systems
【24h】

Clustered Mixture Particle Filter for Underwater Multitarget Tracking in Multistatic Active Sonobuoy Systems

机译:集群式混合粒子过滤器在多静态主动声纳浮标系统中的水下多目标跟踪

获取原文
获取原文并翻译 | 示例

摘要

The problem of multitarget tracking in underwater multistatic active sonobuoy systems is challenging because of the large number of false contacts and multiple reflections that reach the receivers. Targeting a robust solution that can track an unknown time-varying number of multiple targets, while keeping continuous tracks even in scenarios with large number of false contacts per ping, a particle filter (PF)-based technique is proposed in this paper. The PF is a nonlinear filtering technique that can accommodate arbitrary sensor characteristics, motion dynamics, and noise distributions. An enhanced version of the PF called the mixture PF is utilized in this paper. While the sampling/importance resampling PF samples from the prior importance density and weights the particles according to the observation likelihood, the mixture PF samples from both importance densities and weights the different groups of particles respectively. The usage of this mixture of importance densities provides better performance and faster convergence to the true targets locations. In order to track an unknown time-varying number of targets, two mixture PFs are used (one for target detection and the other for tracking multiple targets), and a density-based clustering technique. The first filter starts with random uniformly distributed samples over the surveillance area and resets every five pings. Just before the reset, the clustering technique runs to detect the clusters that corresponds to different targets and passes them to the second filter. The performance of the proposed technique is examined and demonstrated by different simulated scenarios and some real datasets from the SEABAR07 trial by the NATO Underwater Research Center.
机译:由于大量虚假接触和到达接收器的多次反射,水下多静态主动式声纳浮标系统中的多目标跟踪问题具有挑战性。针对一种鲁棒的解决方案,该解决方案可以跟踪未知的多个目标的时变数量,即使在每次ping都有大量虚假接触的情况下也可以保持连续的跟踪,本文提出了一种基于粒子滤波(PF)的技术。 PF是一种非线性滤波技术,可以适应任意传感器特性,运动动态和噪声分布。本文使用了PF的增强版本,称为混合PF。虽然从先验重要性密度对PF样本进行采样/重要性重采样并根据观察可能性对粒子进行加权,但混合PF分别从重要性密度和权重不同组的粒子中采样。重要密度的这种混合的使用提供了更好的性能,并且更快地收敛到真实目标位置。为了跟踪未知的随时间变化的目标数量,使用了两个混合PF(一个用于目标检测,另一个用于跟踪多个目标),以及基于密度的聚类技术。第一个过滤器从监视区域内的随机均匀分布的样本开始,每五个ping重置一次。就在重置之前,聚类技术开始运行以检测与不同目标对应的聚类,并将其传递给第二个过滤器。北大西洋公约组织水下研究中心通过不同的模拟场景和SEABAR07试验的一些实际数据集对所提出技术的性能进行了检验和演示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号